scholarly journals Fusarium spp. Mycotoxin Production, Diseases and their Management: An Overview

Author(s):  
Saba Shabeer ◽  
Riffat Tahira ◽  
Atif Jamal
1984 ◽  
Vol 47 (8) ◽  
pp. 637-646 ◽  
Author(s):  
LLOYD B. BULLERMAN ◽  
LISA L. SCHROEDER ◽  
KUN-YOUNG PARK

Mycotoxin production is favored by high humidity and high water activity (aw). To control mycotoxin formation on the basis of moisture, the moisture content must be maintained below a certain critical level for each commodity. Aflatoxin production is favored by temperatures of 25 to 30°C, whereas below 8 to 10°C, aflatoxin production can occur, but the amounts produced are less and the time required for production is longer. Cycling or changing temperature may or may not increase aflatoxin production, depending on the temperatures, mold species and substrates involved. Other mycotoxic molds respond to temperature differently than the aspergilli. Species of Penicillium, Fusarium and Cladosporium are capable of growing at temperatures below 5°C, and some even just below freezing. Penicillium spp. can produce patulin, penicillic acid and ochratoxin at temperatures from 0 to 31°C, whereas Aspergillus ochraceus does not produce ochratoxin or penicillic acid below 12°C. Penitrem production by Penicillium crustosum can occur at refrigeration temperature. Fusarium spp. can produce zearalenone and the trichothecenes at temperatures below 10°C and even below freezing. Maintaining storage temperatures of stored commodities at 5°C or lower will prevent the production of aflatoxins and ochratoxin by aspergilli but will not prevent the production of mycotoxins by Penicillium spp. and Fusarium spp. Mycotoxic molds may grow on a vast array of substrates, but some substrates support little or no mycotoxin production while supporting extensive mold growth. Most substrates that support aflatoxin production are plant products, such as peanuts, Brazil nuts, pecans, walnuts, almonds, filberts, pistachio nuts, cottonseed, copra, corn sorghum, millet and figs. Animal products are less likely substrates for aflatoxin production. The main source of aflatoxins in animal products are residues in milk and animal tissues as a result of consumption of toxic feed by the animal. Some herbs and spices have antifungal properties and do not support mycotoxin production. However, aside from this, most food substrates are susceptible to mold growth and mycotoxin production. Some substrates, such as cheese, cured meats and soybeans, might be less favorable for mycotoxin production, but may still support mycotoxin formation. Drought stress, insect damage and mechanical damage may increase the ability of Aspergillus flavus and other fungi to invade peanuts, cottonseed and grain. Some measure of control can be gained by minimizing drought stress through irrigation and minimizing insect and mechanical damage. Development of peanut varieties and corn hybrids that are resistant to preharvest invasion by A. flavus may also offer some measure control. Competing microorganisms tend to restrict fungal growth and mycotoxin production. Low oxygen concentration (<1%) and/or increased concentrations of other gases (i.e., >90% CO2) may depress mold growth and mycotoxin formation. Antimycotic agents can be used to control mold growth and mycotoxin production. Sorbic acid, potassium sorbate, propionic acid and propionates appear to be more effective antimycotics over a greater range of conditions than benzoates. Other substances, such as sodium diacetate and BHA, also have antifungal activity. Certain herbs and spices, particularly cinnamon, cloves and mustard, may contain enough antifungal activity to exert a protective effect at normal usage levels.


Toxins ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 186 ◽  
Author(s):  
Canxing Duan ◽  
Zihui Qin ◽  
Zhihuan Yang ◽  
Weixi Li ◽  
Suli Sun ◽  
...  

2011 ◽  
Vol 63 (1) ◽  
pp. 29-38 ◽  
Author(s):  
A. Baturo-Cieśniewska ◽  
A. Lukanowski ◽  
M. Kolenda

Effect of fungicide application on Wheat Head Blight, occurrence of Fusarium spp. and mycotoxin production The aim of the study was to determine if azoxystrobin and metconazole used for the control of wheat FHB at half, full, and quarter more the recommended dose rate may affect in differentiated way on the occurrence of Fusarium spp. and their ability to mycotoxin production in harvested grain, in wheat ears artificially inoculated with two DON-producing isolates of F. culmorum. Macroscopic evaluation showed high incidence of fusariosis. Plant health in the plots where the heads were artificially inoculated and fungicide was not applied was similar to the protected ones. Only increasing the dose metconazole resulted in a stronger reduction of fusariosis. The advantageous effect of azoxystrobin was not observed. Mycological analysis of harvested grain showed the presence of a number of F. culmorum, but from samples sprayed with metconazole it was isolated in smaller quantities. Also F. avenaceum, F. graminearum, F. poae and F. tricinctum were isolated. Molecular analysis showed the presence of F. culmorum in all samples of harvested grain. Also genes from Tri cluster were identified, involved in the synthesis of type-A and type-B trichothecenes - especially DON and 3Ac-DON. Chromatography revealed the presence of small quantities of mycotoxins. In all samples DON and 3Ac-DON were predominant. In general, F. culmorum isolate, which caused weaker symptoms of FHB and was less numerously isolated from grain that the other one, produced smaller amounts of mycotoxins. Samples protected with azoxystrobin contain the largest quantities of DON. Effect of different doses of fungicides on the number of mycotoxins was not clearly established.


2014 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Yesid Fabián Acevedo-Granados ◽  
Luz Elena Cano ◽  
Adelaida María Gaviria Rivera
Keyword(s):  

Fusariumes un género fúngico amplio y diverso de diferentes complejos deespecies, causante de una gran variedad de enfermedades en plantas, productor dediversas toxinas y representa un importante patógeno oportunista en humanos. Laidentificación de las especies de Fusarium ha sido por mucho tiempo una tareacompleja y controversial. Esto es debido principalmente a la aplicación de diferentessistemas taxonómicos y la inherente variabilidad morfológica de algunas de estasespecies. Estas características requieren de la revisión por parte de un expertomicólogo, con el fin de lograr un acertado y confiable diagnóstico, el cual es crucialen el manejo de enfermedades o infecciones y estudios de diversidad genética. EnColombia, se ha reportado un incremento anual del 317 % de casos de infeccionescausadas por Fusarium, entre 1995 y 2003, sin embargo en centros especializados anivel nacional en micología médica, no se lleva a cabo un diagnóstico a nivel deespecie. El objetivo de este estudio fue el de establecer la identidad de aislamientosclínicos de Fusarium, mediante el uso de un marcador molecular. Para lograr esteobjetivo se llevó a cabo la identificación de los 59 aislamientos mediante consulta enla base de datos Fusarium-ID con base en secuencias codificantes del factor deelongación de la traducción EF-1a. Los resultados obtenidos permitieron observar laagrupación de los 59 aislamientos en tres complejos de especies: Fusariumoxysporum(FOSC), Fusarium solani (FSSC) y Fusarium incarnanatum-equiseti(FIESC). Basado en los resultados, se observa que el uso de las secuenciascodificantes para el factor de elongación de traducción permiten una confiableclasificación de los aislamientos de origen clínico y permite ratificar la utilidad queposee este marcador molecular en los distintos complejos de Fusarium.


2017 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Angela P. Cajiao
Keyword(s):  

El comercio del café es uno de los renglones económicos más importantes a nivel mundial, sin embargo, también es susceptible a contaminaciones desde su cosecha hasta su transformación. Para la realización de este estudio se recolectaron muestras de café cereza procedentes de diferentes municipios productores de Norte de Santander y posteriormente en el laboratorio se aislaron y caracterizaron fenotípicamente los siguientes agentes fúngicos del grano de café: Aspergillus  spp., Penicillium spp., Fusarium spp., Cladosporium  spp., Mucor spp. y  Rhizopus spp. con ayuda de claves taxonómicas. Los hongos que presentaron una alta incidencia fueron Aspergillus spp. y Fusarium spp. Entre las tres variables fisicoquímicas analizadas en el café cereza (pH, actividad de agua, % de humedad) se puede afirmar con certeza que la actividad de agua y el porcentaje de humedad influyen directamente en el número y tipo de aislamientos fúngicos obtenidos. 


2019 ◽  
Vol 1 (76) ◽  
pp. 155-157
Author(s):  
Viktor Sokirko ◽  
◽  
Marta Nemchenko ◽  
Roman Nevzorov ◽  
Nikolay Leonov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document