scholarly journals Method of adaptive current protection against earth faults in 6–10 kV cable networks with an insulated neutral

Vestnik IGEU ◽  
2019 ◽  
pp. 31-39 ◽  
Author(s):  
O.A. Dobryagina ◽  
V.V. Tyutikov ◽  
T.Yu. Shadrikova ◽  
V.A. Shuin

Simple and reliable zero sequence overcurrent protection in distribution 6–10 kV cable networks with an insulated neutral is most widely used for protection against single phase earth faults. However, protection of this type in many cases does not provide the required sensitivity to internal (inside the protected zone) faults as it must be tuned to the response current from surge transients during external faults through an intermittent arc. It is possible to increase the sensitivity if adaptive current protection is applied. However, the known methods for its implementation are only effective for stable faults through transient resistance but do not provide high dynamic stability of operation in transient conditions in case of arc intermittent earth faults that are the most dangerous for the network. Therefore, an urgent problem to be solved now is improving the principles of adaptive current protection against earth faults. To compare the efficiency of the known and proposed principles of adaptive current protection implementation taking into account the complexity of transients during earth faults through an intermittent arc in 6–10 kV cable networks, we used Matlab simulation with the SimPowerSystem and Simulink extension packages. The research into the operation algorithms of adaptive current protection against earth faults was carried out on simulation models of 6–10 kV cable networks with an insulated neutral and with neutral grounding through a high-value resistor. The studies on the simulation models have shown that the known methods of implementation of adaptive current protection against earth faults based on the use of full zero sequence currents and voltage are ineffective during intermittent arc earth faults. The authors propose a method of adaptive current protection against earth faults in 6–10 kV cable networks with an insulated neutral and with neutral grounding through a high-value resistor that provides a significant increase in dynamic stability of transient operation with arc ground faults and allows using only zero sequence current and voltage components of the operating frequency of 50 Hz as the actuating quantities. The proposed method of implementing adaptive current protection against earth faults in 6–10 kV cable networks with an insulated neutral and with neutral grounding through a high-value resistor does not only increase the sensitivity of this protection type to earth faults through transient resistence and dynamic stability of operation in transient condiitons in case of arc intermittent earth faults but also broadens the range of its possible applications

Vestnik IGEU ◽  
2019 ◽  
pp. 30-41
Author(s):  
Yu.D. Kutumov ◽  
V.V. Tyutikov ◽  
T.Yu. Shadrikova ◽  
V.A. Shuin

In distribution 6–10 kV networks with an insulated neutral for earth fault protection, zero sequence current directional protection devices are commonly used. According to the operation data, the main disadvantage of such kind of protection is the possibility of their functioning failures in transient conditions with the most dangerous for network intermittent arc earth faults. It is known that most earth faults in 6–10 kV networks, primarily in the initial stage of insulation damage, have an intermittent arc. Operation failures of zero sequence current directional protection in case of arc faults reduce the operational reliability of the protected network and, as a result, the reliability of power supply to consumers. Nowadays, new developments of electrical power systems relay protection devices, including earth fault protection of medium voltage distribution electrical networks, are implemented only on a microprocessor base. Therefore, the selection and justification of the implementation principles of zero sequence current directional protection which can provide high dynamic stability of functioning is a relevant objective. When analyzing the dynamic stability of the functioning of zero sequence directional current protection, regarding the complexity of transients during intermittent arc earth faults in medium voltage electrical networks with an isolated neutral, the simulation in Matlab using SimPowerSystem and Simulink was carried out. This study focuses on transient currents and voltages as the main factor influencing dynamic stability of the functioning of zero sequence current directional protection. The impact of other factors, for example, the inaccuracies of the primary zero sequence current and voltage transducers, the scheme of formation of compared quantities, etc. was not taken into account in simulation models. The study has allowed determining the causes of possible functioning failures of digital current earth fault directional protection in dynamic operation modes. It has been shown that the usage of orthogonal components of fundamental frequency of zero sequence voltage and current in current directional protection devices eliminates the failure of their operation with any kind of arc earth faults. To ensure high dynamic stability of operation under the influence of transients during arc intermittent earth faults, current directional protection for this type of damage should be performed on the basis of monitoring the phase relationships of the fundamental frequency components of 50 Hz of zero sequence voltage and current, but not their full values.


2020 ◽  
Vol 216 ◽  
pp. 01017
Author(s):  
Vladimir Shuin ◽  
Tatiana Shadrikova ◽  
Olga Dobryagina ◽  
Elena Shagurina

Single-phase earth faults are the predominant type of damage in distribution 6-10 kV cable networks, and are often the root cause of power failures to consumers, accompanied by significant economic damage. Therefore, reliability for about 50% of consumers of industrial and urban power supply systems depends on the technical perfection of protection against earth faults. The currently used approach to the design of protection and signaling of earth faults, based on the application of the existing concept of selectivity of considered protection, does not always ensure the achievement of the main goal – increasing the reliability of power supply to consumers. To improve the reliability of power supply, new technical solutions are needed that provide not only selective detection of the damaged connection for all types of single-phase earth faults, but also the recognition of the most dangerous for the network and the protected connection faults types for automatic selection the most effective protection action (signal or shutdown). Within the framework of the existing approach, the design of protection against earth faults with the specified properties is possible only on the basis different methods of its implementation in networks with different neutral grounding modes, which is associated with the complication of protection circuit, its design and exploitation. A new approach has been proposed that provides universal technical solutions for protection and signaling of earth faults for 6–10 kV cable networks with various neutral grounding modes. To implement the proposed approach, universal adaptive current protection and universal admittance protection based on the control of the capacitance of zero sequence loop of the protected connection have been developed.


Author(s):  
Zhenxing Li ◽  
Jialing Wan ◽  
Pengfei Wang ◽  
Hanli Weng ◽  
Zhenhua Li

AbstractFault section location of a single-phase grounding fault is affected by the neutral grounding mode of the system, transition resistance, and the blind zone. A fault section locating method based on an amplitude feature and an intelligent distance algorithm is proposed to eliminate the influence of the above factors. By analyzing and comparing the amplitude characteristics of the zero-sequence current transient components at both ends of the healthy section and the faulty section, a distance algorithm with strong abnormal data immune capability is introduced in this paper. The matching degree of the amplitude characteristics at both ends of the feeder section are used as the criterion and by comparing with the set threshold, the faulty section is effectively determined. Finally, simulations using Matlab/Simulink and PSCAD/EMTDC show that the proposed section locating method can locate the faulty section accurately, and is not affected by grounding mode, grounding resistance, or the blind zone.


2014 ◽  
Vol 986-987 ◽  
pp. 1682-1684
Author(s):  
Gang Chen ◽  
Qing Hao Wang ◽  
Guo Bin Liu ◽  
Tian Shu Hai ◽  
Bo Liu ◽  
...  

The cables in 66 kV and 220 kV systems are used in single-phase style, and it must be grounded between the cables. The connection ways between different lengths of cables are in different ways, thus, it may occur influence to circuit parameters, especially to zero sequence impedance. In order to clarify the situation from theory analysis to calculate impedance under all kinds of connection modes, the paper gives an actual cable measured value, and introduces the correct measuring method, together, points out the matters needing attention in the measurement.


Author(s):  
Sudha Bhutada ◽  
S.R. Nigam

<p>In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome is presented in this paper.</p>


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4732
Author(s):  
Amir Farughian ◽  
Lauri Kumpulainen ◽  
Kimmo Kauhaniemi

In this paper, two new methods for locating single-phase to ground faults in isolated neutral distribution networks are proposed. The methods are based on the analysis of symmetrical sequence currents. They are solely based on currents, not requiring voltage measurement. The first method employs only the zero sequence current and the second one utilizes the negative sequence current in combination with the zero sequence current. It is revealed why using only zero sequence current with a simple threshold is insufficient and may lead to false results. Using the proposed methods, earth faults with high resistances can be located in isolated neutral distribution networks with overhead lines or cables.


Sign in / Sign up

Export Citation Format

Share Document