scholarly journals Design and Control of a Low-Cost Robotic Hand Using the Robot Operating System

2019 ◽  
Author(s):  
Walter Fetter Lages ◽  
Gabriel Figueiredo Schmitz ◽  
Renato Henriques
2019 ◽  
Vol 1 (1) ◽  
pp. 90-93
Author(s):  
Tan Thanh Nguyen ◽  
Duy Khanh Nguyen

Robots imitating spider’s moving have many advantages such as flexible movement, high stability, diversity in movements performed, especially in terrain  crossing, in military reconnaissance, in surveying and collecting environmental data in dangerous areas,.... In this article  with the main objective is to exploit multiple control methods to support applications of a spider robot with low-cost, a spider robot with 6 legs and 18 joints was designed. The ESPWROOM-32 module (ESP32-D0WDQ6 chip) and MIT App Inventor were used as the main tools for conducting this research. As a result, the robot is controlled via Bluetooth and Wifi to move, making some actions by self-written software running on the Android operating system. In addition, the robot has the capacity of self-propelled to avoid simple obstacles and send some environmental parameters to the software, including obstacles distance, humidity and temperature.


Author(s):  
Yi-Chang Wu ◽  
Huan-Chun Wang

Robots have been used in various areas to replace manpower, reduce costs, and facilitate more effective resource allocation. This study sought to assist the business of the bureau by developing two robots using the Robot Operating System. The developed robots have autonomous intelligent navigation functions and are suited to monitor the environment of <br /> the laboratories in the bureau. One robot had a temperature and humidity sensor and an infrared thermal camera, and it could be used to patrol and monitor the laboratory environment. The other robot had drawers in which specimens could be placed; robotic arm in the elevator could coordinate and control elevators, enabling the robot to move and transport specimens autonomously. Plenty of tests were conducted to verify the feasibility <br /> and practicality.


2021 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Jaime Mas-Santillán ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Roberto Javier López-Sastre

This paper describes how we developed a novel low-cost assistive robotic platform, with AI-based perception capabilities, able to navigate autonomously using Robot Operating System (ROS). The platform is a differential wheeled robot, equipped with two motors and encoders, which are controlled with an Arduino board. It also includes a Jetson Xavier processing board on which we deploy all AI processes, and the ROS architecture. As a result of the work, we have a fully functional platform, able to recognize actions online, and navigate autonomously through environments whose map has been preloaded.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Haosen Yang ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian ◽  
Kunyang Wang ◽  
...  

Abstract This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.


2020 ◽  
Vol 31 (1) ◽  
pp. 59-68

Modern households are becoming more and more convenient and intelligent by applying new technology to reduce the time spent on house chores. In this study, the authors proposed the mapping, covering strategies, and control algorithms for vacuum cleaner robot. The robot will automatically implement the cleaning task in a single pass. The sensor system includes infrared sensor, 9 Dof MPU 9250, Delta Lidar 2A, ultrasonic sensor to help robots navigate, build maps and detect obstacles. ROS system (Robot Operating System) is used to control and simulate vacuuming operation in real-world environments. The experiments are conducted in order to illustrate the superiority of the proposed approach.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771747 ◽  
Author(s):  
Casper Schou ◽  
Ole Madsen

Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic environments alongside the production staff. To cope with the dynamic environment and workflow, new configuration and control methods are needed compared to those of traditional industrial robots. The new methods should enable shop floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative robots. The article focuses on the control framework enabling quick and easy exchange of hardware modules as an approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot operating system. The framework enables robot operating system packages to be adapted into agents and thus supports the software sharing of the robot operating system community. A clear separation of the hardware agents and the higher level task control is achieved through standardization of the functional interface, a standardization maintaining the possibility of specialized function features. A feasibility study demonstrates the validity of the framework through a series of reconfigurations performed on a modular collaborative robot.


2018 ◽  
Author(s):  
Yi Chen ◽  
Sagar Manglani ◽  
Roberto Merco ◽  
Drew Bolduc

In this paper, we discuss several of major robot/vehicle platforms available and demonstrate the implementation of autonomous techniques on one such platform, the F1/10. Robot Operating System was chosen for its existing collection of software tools, libraries, and simulation environment. We build on the available information for the F1/10 vehicle and illustrate key tools that will help achieve properly functioning hardware. We provide methods to build algorithms and give examples of deploying these algorithms to complete autonomous driving tasks and build 2D maps using SLAM. Finally, we discuss the results of our findings and how they can be improved.


Sign in / Sign up

Export Citation Format

Share Document