scholarly journals Combination approach to diagnosis and treatment of an elderly patient with chronic Ph-negative myeloproliferative neoplasm and concomitant surgical pathology. Clinical observation

MD-Onco ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 61-65
Author(s):  
Yu. E. Ryabukhina ◽  
P. A. Zeynalova ◽  
O. I. Timofeeva ◽  
F. M. Abbasbeyli ◽  
T. V. Ponomarev ◽  
...  

Chronic myeloproliferative neoplasms (CMPN), Ph-negative, are of clonal nature, develop on the level of hematopoietic stem cell and are characterized by proliferation of one or more hematopoietic pathways. Currently, the group of Ph-negative CMPN includes essential thrombocythemia, primary myelofibrosis, polycythemia vera, myeloproliferative neoplasm unclassifiable.Identification of mutations in the Jak2 (V617F), CALR, and MPL genes extended understanding of biological features of Ph-negative CMPN and improved differential diagnosis of myeloid neoplasms. Nonetheless, clinical practice still encounters difficulties in clear separation between such disorders as primary myelofibrosis, early-stage and transformation of essential thrombocythemia into myelofibrosis with high thrombocytosis. Thrombocytosis is one of the main risk factors for thromboembolic complications, especially in elderly people.A clinical case of an elderly patient with fracture of the left femur developed in the context of Ph-negative CMPN (myelofibrosis) with high level of thrombocytosis is presented which in combination with enforced long-term immobilization and presence of additional risk created danger of thrombosis and hemorrhage during surgery and in the postoperative period.

Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1528-1538 ◽  
Author(s):  
Juan Li ◽  
Dominik Spensberger ◽  
Jong Sook Ahn ◽  
Shubha Anand ◽  
Philip A. Beer ◽  
...  

The JAK2 V617F mutation is found in most patients with a myeloproliferative neoplasm and is sufficient to produce a myeloproliferative phenotype in murine retroviral transplantation or transgenic models. However, several lines of evidence suggest that disease phenotype is influenced by the level of mutant JAK2 signaling, and we have therefore generated a conditional knock-in mouse in which a human JAK2 V617F is expressed under the control of the mouse Jak2 locus. Human and murine Jak2 transcripts are expressed at similar levels, and mice develop modest increases in hemoglobin and platelet levels reminiscent of human JAK2 V617F–positive essential thrombocythemia. The phenotype is transplantable and accompanied by increased terminal erythroid and megakaryocyte differentiation together with increased numbers of clonogenic progenitors, including erythropoietin-independent erythroid colonies. Unexpectedly, JAK2V617F mice develop reduced numbers of lineage−Sca-1+c-Kit+ cells, which exhibit increased DNA damage, reduced apoptosis, and reduced cell cycling. Moreover, competitive bone marrow transplantation studies demonstrated impaired hematopoietic stem cell function in JAK2V617F mice. These results suggest that the chronicity of human myeloproliferative neoplasms may reflect a balance between impaired hematopoietic stem cell function and the accumulation of additional mutations.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Muhammed Atere ◽  
Rana Al-Zakhari ◽  
Jennifer Collins ◽  
Francesco Rotatori ◽  
Lloyd Muzangwa

A few types of myeloproliferative neoplasms may be significant for Janus-associated kinase 2 mutation, JAK2 V617F, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. The prevalence of JAK2 mutation is low in the general population but higher in patients with myeloproliferative neoplasms. Some patients with JAK2 V617F-positive essential thrombocythemia are asymptomatic, but others may develop hemorrhagic or thromboembolic complications. Thromboembolism may occur in vessels of high flow organs like the heart and, thereby, present as myocardial infarction. Nonetheless, these patients are usually symptomatic with complaints of chest pain, for example. Atypical (asymptomatic) myocardial infarction with mild thrombocytosis may be the first clue for possible essential thrombocythemia with JAK2 V617F. In this report, we discuss a case of atypical (asymptomatic) myocardial infarction with secondary thromboembolism in a patient positive for JAK2 V617F with a likely myeloproliferative neoplasm.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Murat Aksit ◽  
Giray Bozkaya ◽  
Nuriye Uzuncan ◽  
Sibel Bilgili ◽  
Can Ozlu ◽  
...  

AbstractObjectivesWe aimed to investigate the prevalence of JAK2-V617F mutation and its association with hematologic parameters in polycythemia vera(PV), essential thrombocytosis(ET) and primary myelofibrosis(PMF) patients who have been tested for the mutation.MethodsWe retrospectively reviewed the records of 168 patients (82 males and 86 females) who were tested for JAK2-V617F mutation upon request of Hematology Clinic. JAK2-V617F mutation status, white blood cell (WBC) counts, platelet (PLT) counts, hemoglobin (Hb), hematocrit (Hct) levels and demographics of the patients were recorded.ResultsJAK2-V617F mutation was detected in 55.9% of the 168 patients. The mutation was observed in 58.2% of PV cases, in 54.4% of ET and in 54.5% of PMF cases. All patients were divided into two groups: mutation positive and negative. Age, WBC and PLT levels were significantly higher in mutation positive group (p<0.05). Age, WBC, Hb, Hct and PLT counts in PV cases with JAK2-V617F mutation, age and WBC counts in PMF cases with JAK2-V617F mutation were found to be significantly higher compared to mutation negative patients (p<0.05).ConclusionJAK2-V617F mutation is a very important parameter in diagnostic and prognostic evaluation. Thus, every patient suspected of having a myeloproliferative neoplasm should be screened for JAK2-V617F mutation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4588-4588 ◽  
Author(s):  
Yongbao Wang ◽  
Albert K Ho ◽  
Qiulu Pan ◽  
Frederick Karl Racke ◽  
Dan Jones

Abstract Introduction: Mutations in the chaperone gene calreticulin (CALR) have been recently identified in essential thrombocythemia (ET) and primary myelofibrosis (PMF), and are essentially mutually exclusive with JAK2 or MPL mutations. Normal and mutant CALR proteins may differentially affect the subcellular trafficking of JAK-STAT signaling components. CALR mutations previously reported in ET and PMF have been +1 frameshift (fs) mutations localized to exon (E) 9 that generate a novel C-terminal protein sequence with a shift from acidic to basic residues. CALR E9 in-frame (IF) deletions have been recently rarely reported as polymorphisms such as TMP_ESP_19_13054686_13054688 and TMP_ESP_19_13054650_13054658 (Ensembl database entries). We sought to determine the frequency and associated clinical features of CALR with E9 IF alterations in samples submitted for suspicion of a myeloproliferative neoplasm (sMPN). We also assessed whether CALR IF alterations are differentially associated with +1fs mutations or with JAK2 V617For other somatic mutations in MPN-associated genes. Materials and Methods: CALR mutation analysis of E9 was performed on genomic DNA extracted from blood, bone marrow (BM) aspirate or fixed BM biopsy sections using a Sanger sequencing assay with an analytic sensitivity of at least 15%. E9 IF cases were further assessed and mutations quantified by an Ion torrent sequencing panel assessing CALR, CSF3R, JAK2 and MPL, a second panel containing ASXL1, EZH2, IDH1, IDH2, KRAS, NRAS and TET2 and an Illumina MiSeq extended panel with 20 additional MPN-associated genes. These assays had a sensitivity of approximately 5%. JAK2 V617Fmutations were quantitated using a pyrosequencing assay with an analytic sensitivity of 1%. Results: We assessed CALR E9 mutation status in 733 sMPN samples that were negative for JAK2 V617F mutation. 148 (20.1%) had typical +1fs mutations (95 type 1 and variants, 53 type 2 and variants); 2 (0.3%) had point mutations (E381A and D7373M); 7 (1.0%) had IF deletions including E381_A382>A, D397_D400>D (n =4), D400_K401>D and E405_V409>V. All E9 IF deletions were present at ~50% of reads. Clinical diagnoses were cytopenia/BM fibrosis, ET, thrombocytosis/anemia, and sMPN unspecified. Mutation analysis for 27 additional MPN-associated genes revealed mutations in 5/7 (71.4%) IF deletion cases including in MPL (W515L,40%; D163Y,12%), CSF3R (A470T 46%), ASXL1 (D954fs*26, 45%) and ZRSR2 (S449_R450dup, 27%). No additional mutations were found in the 2 cases with non-synonymous CALR point mutations/SNPs. In a parallel set of 76 MPN samples that had JAK2 V617F at varying levels, we noted 1 E9 IF deletion (D397_D400>D) in a sMPN case with 21.6% JAK2 V617F, and a typical +1fs mutation (K385fs*47) in a case with low (4.2%) JAK2 V617F. All other JAK2 V617F cases had no E9 CALR alterations. Conclusions: CALR E9 in-frame deletions occur in up to 1% of sMPN samples and involve a variety of codons in the acidic domain. Therefore, sizing assays without DNA sequencing are not sufficient to unequivocally distinguish IF deletions from the characteristic +1 frameshift somatic mutations associated with ET and PMF. Given their level, these CALR IF deletions are likely germline sequence variants but are associated with a high frequency of somatic mutations in other MPN-associated genes but not with CALR +1fs mutations. Their co-occurrence with pathogenic somatic mutations in JAK2, MPL and CSF3R affecting the JAK-STAT pathway raises the possibility for a contributory role of altered CALR proteins produced by these E9 deletions in the pathogenesis of MPN. Disclosures Wang: Quest Diagnostics: Employment. Ho:Quest Diagnostics: Employment. Pan:Quest Diagnostics: Employment. Racke:Quest Diagnostics: Employment. Jones:Quest Diagnostics: Employment.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


2019 ◽  
Vol 44 (4) ◽  
pp. 492-498
Author(s):  
Gonca Gulbay ◽  
Elif Yesilada ◽  
Mehmet Ali Erkurt ◽  
Harika Gozukara Bag ◽  
Irfan Kuku ◽  
...  

AbstractObjectiveDetection ofJAK2V617F in myeloproliferative neoplasms (MPNs) is very important in both diagnosis and disease progression. In our study, we investigated the frequency ofJAK2V617F mutation in patients with myeloproliferative disorders.MethodsWe retrospectively reviewed the records of 720 patients (174 females and 546 males) who were tested for JAK2 V617F mutation from January 2007 to December 2017.ResultsIn our patients were determined 22.6%JAK2V617F mutation. 33.3% in women, 19.2% in men have been positive forJAK2V617F mutation. In our studyJAK2V617F present in 48.6% of essential thrombocythemia, 80.5% of polycythemia rubra vera (PV), 47.5% of primary myelofibrosis, 10% of MPNs, unclassifiable, 0.8% of others. We also investigated the difference in hematological parameters [white blood cell, hemoglobin (Hb), hematocrit (HCT), red blood cell distribution widths (RDW) and platelets count (PLT)] betweenJAK2V617F positive andJAK2V617F negative patients.ConclusionsInvestigation of the JAK2 V617F mutation is very important in cases of MPNs. In our study JAK2 V617F mutation was higher in PV, essential thrombocythemia, and primary myelofibrosis patients. However, there were significant differences in Hb, HCT, RDW and PLT levels in mutation-positive patients.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5215-5215
Author(s):  
Munazza Rashid ◽  
Rifat Zubair Ahmed ◽  
Shariq Ahmed ◽  
Muhammad Nadeem ◽  
Nuzhat Ahmed ◽  
...  

Abstract Myeloproliferative Neoplasms (MPNs) are a heterogeneous group of clonal disorders derived from multipotent hematopoietic myeloid progenitors. Classic "BCR-ABL1-negative" MPNs is an operational sub-category of MPNs that includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These three disorders are characterized by stem cell-derived clonal myeloproliferation. The most common mutation in the MPNs PV, ET and PMF is JAK2 V617F. JAK2 V617F can be detected in about 95% of patients with PV while remaining 5% of PV patients carry a somatic mutation of JAK2 exon 12. Approximately one third of patients with ET or PMF do not carryany mutation in JAK2 or MPL. In December 2013 mutations were described in calreticulin (CALR) gene in 67-71% and 56-88% of JAK2 V617F and MPL negative patients with ET and PMF, respectively. Since this discovery, CALR mutations have not only been recommended to be included in the diagnostic algorithm for MPNs, but also CALR exon 9 mutations have been recognised to have clinical utility as mutated patients have a better outcome than JAK2 V617F positive patients.CALR mutations have also been reported to be mutually exclusive with JAK2 V617F or MPL mutations. According to our knowledge so farthere have been only six reports published,which described patients harbouring concurrent JAK2 V617F and CALR exon 9 mutations; seven ET, three PMF, one PV and one MPN-U. In the present study we are reporting ET patient with coexisting JAK2 V617F and CALR exon 9 mutations from our center. In July 2011, 55-years-old female patient was referred to our hospital with a history of gradual elevation of platelet counts accompanied with pain in right hypochondriac region and feet. Bone Marrow aspirate consisted of 'Stag-horn' appearance Megakarocytes. Multiple platelets aggregates and islands were seen throughout the aspirate smear. ARMS-PCR for JAK2 V617F mutation was positive whereas bidirectional Sanger sequencing for CALR exon 9 exhibited c.1214_1225del12 (p.E405_D408del) mutation pattern. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e18561-e18561
Author(s):  
Gabriela Hobbs ◽  
Jennifer Lombardi Story ◽  
Maura A. Blaney ◽  
Philip C. Amrein ◽  
Amir Tahmasb Fathi ◽  
...  

e18561 Background: Post-myeloproliferative neoplasm (MPN) acute myeloid leukemia (AML) and accelerated phase disease (AP) are associated with poor outcomes; the optimal management of these patients at transformation is uncertain in the era of widely available molecular testing. Methods: We performed a retrospective analysis of adult patients with MPN that had transformed into AML (greater than 20% blasts) or AP (10-19% blasts and dysplastic features) from 2006-2016. Patients were 18 or older at AML/AP diagnosis. Outcomes were described by Kaplan and Meier and the Log rank test. Results: We identified 30 patients, with transformed MPN into AML (n = 23) or AP (n = 7), including one patient in AP at presentation. Most were male (73%). Disease evolved from polycythemia vera (n = 6), essential thrombocythemia (n = 11), primary myelofibrosis (n = 9) and other MPN diagnoses (MPN/MDS overlap, n = 3; MPN NOS, n = 1). The median age at MPN diagnosis was 67.5 yrs, and at transformation 72 yrs. The median time from MPN diagnosis to transformation was 5.6 yrs (range 0.3-36.0). 12 patients had JAK2 V617F testing both at MPN diagnosis and AML diagnosis; 6 had JAK2 mutations at both time points and 2 lost JAK2 at transformation. At AML/AP transformation, 11 patients had NGS mutation testing; the most common somatic mutations were NRAS (5/11), RUNX1 (2/11), and SRSF2 (2/11). 20 patients received treatment outside of supportive care. Of these, 8 achieved a CR or CRi (40%; 7/10 with induction and 1/8 with HMA). The only HMA response was on a trial of HMA+SGN33a. The median survival from AML/AP transformation was 5.8 mo. Of treated patients, median survival was 7.4 mo; 37% of treated patients were alive at 1 yr. Nine patients (31%; 7 with AML and 2 with AP) underwent allogeneic transplantation; 2 relapsed during follow-up. 74% of patients treated with allo-HCT were alive at 1 yr after AML/AP transformation. Conclusions: AML or accelerated phase disease arising out of MPN carries a dismal prognosis. HMA monotherapy had little efficacy in this group (0/7 achieved remission). Allogeneic transplantation offered the best chance of survival at one year, but fewer than a third of patients were able to proceed to transplant.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Andrea Patriarca ◽  
Donatella Colaizzo ◽  
Gianluca Tiscia ◽  
Raffaele Spadano ◽  
Silvia Di Zacomo ◽  
...  

High-throughput DNA sequence analysis was used to screen for TET2 mutations in peripheral blood derived DNA from 97 patients with BCR-ABL-negative myeloproliferative neoplasms (MPNs). Overall six mutations in the coding region of the gene were identified in 7 patients with an overall mutational frequency of 7.2%. In polycythemia vera patients (n=25) 2 mutations were identified (8%), and in those with essential thrombocythemia (n=55) 2 mutations (3.6%); in those with unclassifiable MPN (n=8) 3 mutations (37.5%). No primary myelofibrosis patients (n=6) harboured TET2 mutations. Three unreported mutations were identified (p.P177fs, p.C1298del, and p.P411del), the first two in patients with unclassifiable MPN, the last in a patient with essential thrombocythemia. On multivariate analysis the diagnosis of an unclassifiable MPN was significantly related to the presence of TET2 mutations (P=0.02; OR: 2.81; 95% CI 1.11–7.06). We conclude that TET2 mutations occur in both JAK2 V617F-positive and -negative MPNs and are more frequent in MPN-U patients. This could represent the biological link between the different classes of myeloid malignancies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5395-5395
Author(s):  
Maria Carolina Costa Melo Svidnicki ◽  
Paula De Melo Campos ◽  
Moisés Alves Ferreira Filho ◽  
Caio Augusto Leme Fujiura ◽  
Tetsuichi Yoshizato ◽  
...  

Background Myeloproliferative neoplasms (MPNs) are chronic hematopoietic stem cell disorders, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). JAK2, MPL, and CALR mutations are considered as "driver mutations" and are directly implicated in the disease pathogenesis by activation of JAK/STAT signaling. However, some patients do not harbor any of these mutations. Since such triple-negative MPNs are very rare, no specific molecular markers were established to use for a precise differential diagnosis yet. So far, the introduction of next generation sequencing (NGS) technologies in research of myeloid neoplasms has provided valuable contributions on the identification of new molecular biomarkers, establishing more accurate risk rating and selection of more specific therapeutic interventions. This study aimed to identify, through targeted deep sequencing, specific genetic variants in patients with triple-negative MPNs. Methods We performed NGS targeted sequencing in 18 Brazilian triple-negative patients (11 MF and 7 ET). The median age at diagnosis was 64 years for primary myelofibrosis (range 42-78), and 52 years for essential thrombocythemia (range 19-79). In 14 cases, we used the Illumina TruSight Myeloid Panel covering 54 genes and in 4 cases we used a custom Sure Select Agilent panel containing more than 300 genes previously reported to be related to myeloid neoplasm. The inclusion criteria for variant filtering was quality score>30, read count>50, minor allele frequency<0.05, frameshift, nonsense, splice site and 5`UTR variants, and missense variants described as deleterious for at least three prediction softwares. Results Possible pathogenic mutations were identified in 33 genes by Illumina and/or Agilent panels. Frameshift/nonsense or missense variants previously described as pathogenic correspond to 11 variants (Table 1). Out of these, mutations in TET2 were the most frequently identified (in 9/18 (50%) of the cases). In three MF patients with TET2 mutations no other considered pathogenic mutation was identified, indicating a possible role of TET2 as a driver gene. According to previous reports, the frequency of TET2 mutations in triple-negative MPNs patients were only 7%. Phenotypically, in our triple-negative MPNs, 6/11 (54.5%) MF and 3/7 (42.9%) ET patients harbored TET2 mutations. Clinically, the adverse prognostic impact of TET2 mutations in MPN had not been consistently shown by previous studies. In addition, mutations in SF3B1, CEBPA, and KMT2A genes were the second most frequent ones detected in 2/18 each (11%) of the patients, some of which were concomitant with TET2 mutations, suggesting additional clonal advantage due to these genetic events. Other potentially pathogenic variants were also detected is genes that have been reported to be related to other myeloid neoplasms (KMT2A, CDKN2A, TERT, DIS3, ZFPM1, PCDHA8, SAMD9, SAMD9L, DCLRE1C,ERBB3, SDHA, PCDHA6, SVEP1, MAP2K1 and EP300). Conclusions We have characterized the genomic alterations in 18 Brazilian patients with MPN triple-negative for either JAK2, CALR or MPL main mutations. Using a sensitive NGS platform, we identified significantly more frequent mutations in TET2 gene (in as many as a half of the cases) compared to JAK2, MPL, CALR mutation-positive MPN cases. We also uncovered mutations in genes not previously related with in MPN. Our novel findings call for further studies validating the frequencies, biological significance, and prognostic impacts of somatic mutations in triple-negative MPNs. Disclosures Ogawa: Qiagen Corporation: Patents & Royalties; RegCell Corporation: Equity Ownership; Kan Research Laboratory, Inc.: Consultancy; Asahi Genomics: Equity Ownership; ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document