NON-UNIFORMITY CONVENTIONAL SPRINKLER IRRIGATION EFFECTS ON BEAN YIELD

2000 ◽  
pp. 853-865 ◽  
Author(s):  
R. Rezende ◽  
A.C.A. Gonçalves ◽  
J.A. Frizzone ◽  
M.V. Folegatti ◽  
J.A. Muniz
2004 ◽  
Vol 18 (4) ◽  
pp. 902-907 ◽  
Author(s):  
Abdel O. Mesbah ◽  
Stephen D. Miller ◽  
Paul J. Koetz

Field experiments were conducted in 1994 and 1995 under sprinkler irrigation at the University of Wyoming Research and Extension Center at Torrington to evaluate the effects of season-long interference and the effects of duration of interference of several common sunflower and green foxtail densities, alone or in combination, on pinto bean yield. Green foxtail densities did not significantly affect pinto bean yield in 1994 and reduced yield only at the highest density in 1995. In contrast, sunflower densities reduced pinto bean yield, except at the lowest density in 1994. Pinto bean yield was reduced as the combined density of green foxtail and sunflower increased. Compared with yield losses from each weed species alone, yield reductions from mixed species were additive in 1994 and at low weed densities in 1995 and less than additive at higher weed densities in 1995. The minimum number of weeds per m of row that will economically reduce pinto bean yield was estimated to be 1.6 to 2.9 for green foxtail and 0.12 to 0.2 for sunflower. Pinto bean yield reduction increased as the duration of green foxtail and sunflower interference increased, whether grown alone or in combination. The maximum duration that green foxtail, sunflower, and green foxtail plus sunflower can interfere with pinto bean before causing economical losses was estimated to be 4.5, 3.2, and 2.5 wk, respectively.


2013 ◽  
Vol 105 (6) ◽  
pp. 1515-1528 ◽  
Author(s):  
Yenny F. Urrego‐Pereira ◽  
Antonio Martínez‐Cob ◽  
Victoria Fernández ◽  
José Cavero

Author(s):  
E. F. Charles ◽  
S. O. Agele ◽  
O. P. Aiyelari ◽  
I. B. Famuwagun ◽  
E. Faboade

The effects of plantain shade and dry season irrigation on the growth, field survival, flowering and pod production of cacao was investigated. Treatments were a 2 by 2 factorial combinations of shade regimes (Unshaded/open sun and shaded) and irrigation intervals (5-day and 10-day intervals) arranged in a split-plot design. There was an unirrigated but shaded control. The shade regimes constituted the main plot while irrigation intervals were the sub-plot treatments. The growth, dry season survival, flowering and pod/bean yield characters of cacao were enhanced in the unshaded (open sun) compared with the shaded plants. The open sun treatment combined with 5-day irrigation produced the largest canopy development, flowering and pod production compared with shading-irrigation combinations. The shade-irrigation ameliorated microclimate and enhanced growth and development, flowering and uniform fruiting/pod production and total bean yield and reduced dry season mortality (whole tree death, branch and twig dieback). For the non-irrigated but shaded cacao, about 30% dry season mortality (branch and twig dieback) were obtained. Air temperatures within the cacao field were highest for open sun cacao followed by moderate and dense shade respectively. Flowers were more profuse for unshaded (open sun) cocoa compared with the shaded while the yield and yield components of cacao for each harvest dates and total pod and bean yields were significantly different between the unshaded and shaded cacao regimes. Trees that were irrigated at 5-day intervals produced significantly (P < 0.05) higher LAI, branching, flowers and pods compared with those irrigated at 10-day intervals. The 5-day irrigation interval significantly increased percentage of trees bearing flowers and pods, and produced larger number, and heavier pods and beans compared with the 10-day interval. The drip irrigation strategy adopted ameliorated dry season terminal drought (hydrothermal stresses) in cacao. This is a veritable tool to scale up growth, survival, establishment and flower/pod production.


2002 ◽  
Vol 66 (1) ◽  
pp. 222 ◽  
Author(s):  
T. A. Howell ◽  
A. D. Schneider ◽  
D. A. Dusek
Keyword(s):  

2002 ◽  
Vol 1 (2) ◽  
pp. 300 ◽  
Author(s):  
F. X. M. Casey ◽  
N. Derby ◽  
R. E. Knighton ◽  
D. D. Steele ◽  
E. C. Stegman

1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Sign in / Sign up

Export Citation Format

Share Document