INFLUENCE OF CULTIVATION PERIOD ON SEED BULB PRODUCTION OF KOREAN NATIVE ALLIUM WAKEGI ARAKI

2007 ◽  
pp. 275-278
Author(s):  
M.H. Jo ◽  
I.K. Ham ◽  
S.K. Park ◽  
M.A. Lee ◽  
K.H. Kwon ◽  
...  
2017 ◽  
Vol 8 ◽  
pp. 1649-1657 ◽  
Author(s):  
Antonín Brož ◽  
Lucie Bačáková ◽  
Pavla Štenclová ◽  
Alexander Kromka ◽  
Štěpán Potocký

Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18–210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80–85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.


Author(s):  
Jose M.F. Babarro ◽  
María José Fernández-Reiriz ◽  
Uxío Labarta

Mussel seed Mytilus galloprovincialis (Bivalvia: Mytilidae) from two origins (rocky shore and collector ropes) was cultivated on a raft in the Ría de Arousa (north-west Spain), from seeding to thinning out, for 226 d (November 1995–July 1996) and two aspects of metabolism, oxygen consumption rate (VO2) and ammonia excretion rate (VNH4-N) were studied in situ.The model derived from multiple analysis of oxygen consumption accounted for 91.9% of the variance, based on dry weight of the mussels and the environmental factors quality of food (organic content) and mainly chlorophyll-a. Seed origin also showed significant influence. The seasonal pattern of the oxygen consumption can be attributed mainly to the variation of chlorophyll-a, which showed a higher range of values in the spring months.Origin of seed did not show a homogeneous effect on oxygen consumption throughout the cultivation period. Collector rope mussels showed higher oxygen consumption values at the beginning of the cultivation period and after the first 15 d, but the rocky shore mussels showed a higher oxygen consumption between days 22 and 110. Energy-conserving patterns and lower condition index at the onset of the experiment for rocky shore mussels could explain these initial differences.Multiple analysis on the variation of ammonia excretion rate provided a model that accounted for 72.6% of the variance based on dry weight of mussels, seed origin and the environmental parameters chlorophyll-a and total particulate matter. The rocky shore mussels showed a significantly higher excretion values for most of the cultivation period, although there was no constant tendency throughout. High excretion values were recorded between January and March, whilst for the rest of the cultivation period values were low.The O:N index was higher in collector rope mussels for most of the cultivation period, which may suggest a more favourable energy metabolism and/or a more appropriate nutritional state for these specimens.


2013 ◽  
Vol 17 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Sneha Athalye ◽  
Ratna Sharma-Shivappa ◽  
Steven Peretti ◽  
Praveen Kolar ◽  
Jack P. Davis

2021 ◽  
Author(s):  
Junko Ishikawa ◽  
Shigeto Fujimura ◽  
Mari Murai-Hatano ◽  
Koji Baba ◽  
Manami Furuya ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
E. Adlaoui ◽  
C. Faraj ◽  
M. El Bouhmi ◽  
A. El Aboudi ◽  
S. Ouahabi ◽  
...  

Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area.


2016 ◽  
pp. 23-31
Author(s):  
Patthanant Natpinit ◽  
Rewadee Anuwattana ◽  
Thitirat Ditkaew ◽  
Tawee Suppinunt

This investigation aims to study the value of synthesized zeolite in reducing greenhouse gasses (GHGs) emitted by rice stubble. The experiment was divided into 2 parts. Part I com-prised a study of the efficiency of GHGs reduction by synthesized zeolite and part II involved application of synthesized zeolite to reduce the cumulative GHGs emissions over 110 days from paddy rice cultivation in Khlong 4, Pathum Thani Province. The experiments comprised 2 treatments: untreated control (I), and rice stubble with addition of synthesized zeolite (II). The study measured changes in the emissions of CH4 and CO2, conducted 3 d per week for 1.30 h during the cultivation period. The result s showed that rice stubble synthesized zeolite could reduce GHGs CH4 and CO2under irrigated conditions. In the experiment, synthesized zeolite had an efficiency of 8.91% and 24.5% in reducing CH4 and CO2, respectively. Footprint analysis showed that both gases were continuously emitted throughout cultivation. In Cumulative emissions from the control treatment were 42.57 g CH4 m-2 cropand 86.40g CO2 m-2 crop. Zeolite addition reduced emission levels to 30.71 g CH4 m-2 crop and 57.77 g CO2 m-2 crop. The reduction efficiencies CH4 and CO2 were 27.87% and 33.14%, respectively. It can be concluded that the rice stubble synthesized zeolite was capable of reducing GHGs significantly and that the efficiency was rate-dependent. It was clear that the GHGs emission reduction rate of synthesized zeolite was 0.148 g CH4 m-2 g zeolite and 0.358 g CO2 m-2 g zeolite.


2021 ◽  
Vol 9 (1) ◽  
pp. 121-132
Author(s):  
Susan John ◽  
Farid Abou-Issa ◽  
Karl H. Hasenstein

Abstract In preparation of a flight experiment, ground-based studies for optimizing the growth of radishes (Raphanus sativus) were conducted at the ground-based Advanced Plant Habitat (APH) unit at the Kennedy Space Center (KSC), Florida. The APH provides a large, environmentally controlled chamber that has been used to grow various plants, such as Arabidopsis, wheat, peppers, and now radish. In support of National Aeronautics and Space Administration (NASA)'s goals to provide astronauts with fresh vegetables and fruits in a confined space, it is important to extend the cultivation period to produce substantial biomass. We selected Raphanus sativus cv. Cherry Belle as test variety both for preliminary tests and flight experiments because it provides edible biomass in as few as four weeks, has desirable secondary metabolites (glucosinolates), is rich in minerals, and requires relatively little space. We report our strategies to optimize the growth substrate, watering regimen, light settings, and planting design that produces good-sized radishes, minimizes competition, and allows for easy harvesting. This information will be applicable for growth optimization of other crop plants that will be grown in the APH or other future plant growth facilities.


ALGAE ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 231-240
Author(s):  
Soo Hong Kim ◽  
Young Dae Kim ◽  
Mi Sook Hwang ◽  
Eun Kyoung Hwang ◽  
Hyun Il Yoo

Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20°C) and two light intensities (i.e., 20 and 40 μmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16°C under the both light intensities. The thalli died at 20°C and 20 μmol photons m-2 s-1, and at 18‒20°C and 40 μmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16°C or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.


Sign in / Sign up

Export Citation Format

Share Document