Effect of orchard floor management practices on soil physical properties, growth and yield of ‘Kinnow’ mandarin (Citrus reticulataBlanco)

2016 ◽  
pp. 137-144
Author(s):  
H. Ur-Rahman ◽  
T. Tahir ◽  
M. Ahmed ◽  
G. Nabi ◽  
I. Ali
Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2016 ◽  
Vol 20 (12) ◽  
pp. 1-18 ◽  
Author(s):  
Zhijuan Liu ◽  
Xiaoguang Yang ◽  
Xiaomao Lin ◽  
Kenneth G. Hubbard ◽  
Shuo Lv ◽  
...  

Abstract Northeast China (NEC) is one of the major agricultural production areas in China, producing about 30% of China’s total maize output. In the past five decades, maize yields in NEC increased rapidly. However, farmer yields still have potential to be increased. Therefore, it is important to quantify the impacts of agronomic factors, including soil physical properties, cultivar selections, and management practices on yield gaps of maize under the changing climate in NEC in order to provide reliable recommendations to narrow down the yield gaps. In this study, the Agricultural Production Systems Simulator (APSIM)-Maize model was used to separate the contributions of soil physical properties, cultivar selections, and management practices to maize yield gaps. The results indicate that approximately 5%, 12%, and 18% of potential yield loss of maize is attributable to soil physical properties, cultivar selection, and management practices. Simulation analyses showed that potential ascensions of yield of maize by improving soil physical properties PAYs, changing to cultivar with longer maturity PAYc, and improving management practices PAYm for the entire region were 0.6, 1.5, and 2.2 ton ha−1 or 9%, 23%, and 34% increases, respectively, in NEC. In addition, PAYc and PAYm varied considerably from location to location (0.4 to 2.2 and 0.9 to 4.5 ton ha−1 respectively), which may be associated with the spatial variation of growing season temperature and precipitation among climate zones in NEC. Therefore, changing to cultivars with longer growing season requirement and improving management practices are the top strategies for improving yield of maize in NEC, especially for the north and west areas.


2021 ◽  
Vol 26 (02) ◽  
pp. 224-230
Author(s):  
Rizwan Latif

Peanut (Arachis hypogaea L.) is the common cash crop of the rainfed areas. Appropriate management practices are very important to get better yield of peanut in sandy loam soil. A field study was carried out during the growing seasons of 2018 and 2019 to evaluate the effect of poultry manure (PM) (37.1 t ha-1), farmyard manure (FYM) (49.4 t ha-1), gypsum (GYP) (2.5 t ha-1), liquid humic acid (HA) (49.4 L ha-1) and co-application of GYP (1.2 t ha-1) and FYM (24.7 t ha-1) on peanut yield, quality and soil physical properties. Application of FYM, PM, HA and GYP (alone or in combination) significantly improved peanut yield, quality and soil physical properties. The combined application of GYP and FYM proved most effective (P ≤ 0.05) in improving the peanut yield (no. of pods per plant, 100 seed weight etc), quality (crude protein and oil content) and soil physical properties (moisture percentage, infiltration rate and bulk density). The combined application of GYP and FYM increased the pods yield by 67 and 65% during 2018 and 2019, respectively than control. Crude proteins (21%) and oil contents (9.0%) were also substantially increased in the combined application. Moreover, the combined application of GYP and FYM significantly retained the soil moisture and reduced bulk density of soil. Present findings suggest that integrated use of FYM and GYP under field conditions could improve the crop productivity, crude protein, oil contents, moisture percentage, and reduce the bulk density of soil thus improving overall soil health. © 2021 Friends Science Publishers


AGRICA ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 38-43
Author(s):  
Ketut Turaini Indra Winten

The low of growth and yield of lettuce is quite often caused by the low of soil fertility, especially nitrogen and C-organic content. Poor soil physical properties also contribute to the cause of low yield of lettuce. Improved soil physical and chemical properties by adding casting fertilizers and nitrogen are expected to be able to increase the yields of lettuce. The field experiment was conducted in Candikuning village, district of Baturiti, Tabanan regency, from October 2005 to January 2006. The objective of the experiment was to study the effect of casting fertilizer and nitrogen rates on the growth and yields of lettuce. A randomized complete block design was used in this experiment and two treatment factors were imposed. Those two treatment factors were rates of casting fertilizers (i.e. 0, 10, 20 and 30 t ha"1 ) and rates of N (i.e. 0, 92, 138 and 184 kg N ha"1), which were arranged factorially and repeated three times. Results of the experiment indicated that interaction between casting fertilizer and nitrogen rates did not significantly affect the yields of lettuce. The rates of N only significantly affected several growth variables and the oven-dry weight of heads plant-1. Increased rates of N from 0 to 92 kg N ha-1 significantly resulted in the oven-dry weight of heads of 2.798 g plant-1 which was 13.9% higher than that of 0 kg N ha-1. Rates of casting fertilizer significantly affected head diameter and the oven-dry weight of heads plant"1 and ha-1. Increased rates of casting fertilizer from 0 to 10 t ha-1 gave the oven-dry weight of heads as much as 0.232 t ha"1 or 9.43% higher than the weight given by the rate of 0 t ha-1. The effects of rates of casting fertilizer and N were only significant on several soil physical properties. The relationship between rates of casting fertilizer and yields of lettuce was quadratic (Y = 0.21135 + 0.0032 X - 0.001 X2 ; R2 = 0.981). The optimum rate of casting fertilizer was 16.0 t ha-1 with the maximum oven-dry weight of heads of 0.237 t ha-1, meanwhile, the optimum rate of N had not obtained in this experiment.


Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 851 ◽  
Author(s):  
MS Lorimer ◽  
LA Douglas

The effects of five management practices (native forest, native pasture, Phalaris pasture, crop-pasture rotation, continuous cropping), that had been in place for 18 years, on some soil physical properties of a red-brown earth near Bendigo, Victoria, were studied. Particle size distribution, bulk density and hydraulic conductivity of soil in the A and B horizons at different, management sites were measured. Where cultivation had occurred, soil in the A horizon contained less silt and clay, and more fine sand and coarse sand. The bulk density of the A horizon of soil that had produced at least six wheat crops since 1969 was greater than that of soil used for pasture or forest, while the hydraulic conductivity of soil cropped every year since 1969 was much less than that of soil under native forest. Particle size distributions for soil from the B horizons at the five management sites were found to be similar. Where pastures and crops had been established, the hydraulic conductivity of the upper B horizon was lower, and the bulk density was higher, than that of soil in the native forest (Eucalyptus spp).


2014 ◽  
Vol 38 (1) ◽  
pp. 262-271 ◽  
Author(s):  
Edson Campanhola Bortoluzzi ◽  
Guilherme Luis Parize ◽  
Jackson Korchagin ◽  
Vanderlei Rodrigues da Silva ◽  
Danilo dos Santos Rheinheimer ◽  
...  

Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation), soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity) and plant parameters (root growth system, soybean grain yield, and oat dry matter production) were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.


Sign in / Sign up

Export Citation Format

Share Document