Effect of management practice on properties of a Victorian red-brown earth .1. Soil physical-properties

Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 851 ◽  
Author(s):  
MS Lorimer ◽  
LA Douglas

The effects of five management practices (native forest, native pasture, Phalaris pasture, crop-pasture rotation, continuous cropping), that had been in place for 18 years, on some soil physical properties of a red-brown earth near Bendigo, Victoria, were studied. Particle size distribution, bulk density and hydraulic conductivity of soil in the A and B horizons at different, management sites were measured. Where cultivation had occurred, soil in the A horizon contained less silt and clay, and more fine sand and coarse sand. The bulk density of the A horizon of soil that had produced at least six wheat crops since 1969 was greater than that of soil used for pasture or forest, while the hydraulic conductivity of soil cropped every year since 1969 was much less than that of soil under native forest. Particle size distributions for soil from the B horizons at the five management sites were found to be similar. Where pastures and crops had been established, the hydraulic conductivity of the upper B horizon was lower, and the bulk density was higher, than that of soil in the native forest (Eucalyptus spp).

2012 ◽  
Vol 36 (1) ◽  
pp. 63-70 ◽  
Author(s):  
José Euripides Baquero ◽  
Ricardo Ralisch ◽  
Cristiane de Conti Medina ◽  
João Tavares Filho ◽  
Maria de Fátima Guimarães

Sugarcane, which involves the use of agricultural machinery in all crop stages, from soil preparation to harvest, is currently one of the most relevant crops for agribusiness in Brazil. The purpose of this study was to investigate soil physical properties and root growth in a eutroferric red Oxisol (Latossolo Vermelho eutroférrico) after different periods under sugarcane. The study was carried out in a cane plantation in Rolândia, Paraná State, where treatments consisted of a number of cuts (1, 3, 8, 10 and 16), harvested as green and burned sugarcane, at which soil bulk density, macro and microporosity, penetration resistance, as well as root length, density and area were determined. Results showed that sugarcane management practices lead to alterations in soil penetration resistance, bulk density and porosity, compared to native forest soil. These alterations in soil physical characteristics impede the full growth of the sugarcane root system beneath 10 cm, in all growing seasons analyzed.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2021 ◽  
pp. 44-57
Author(s):  
Kh. A. Shaban ◽  
M. A. Esmaeil ◽  
A. K. Abdel Fattah ◽  
Kh. A. Faroh

A field experiment was carried out at Khaled Ibn El-waleed village, Sahl El-Hussinia, El-Sharkia Governorate, Egypt, during two summer seasons 2019 and 2020 to study the effect of NPK nanofertilizers, biofertilizers and humic acid combined with or without mineral fertilizers different at rates on some soil physical properties and soybean productivity and quality under saline soil conditions. The treatments consisted of: NPK-chitosan, NPK-Ca, humic acid, biofertilzer and control (mineral NPK only). In both seasons, the experiment was carried out in a split plot design with three replicates. The results indicated a significant increase in the soybean yield parameters as compared to control. There was also a significant increase in dry and water stable aggregates in all treatments as compared to control. The treatment NPK-Chitosan was the best in improving dry and stable aggregates. Also, hydraulic conductivity and total porosity values were significantly increased in all treatments due to increase in soil aggregation and porosity that led to increase in values of hydraulic conductivity. Values of bulk density were decreased, the lowest values of bulk density were found in NPK-chitosan treatment as a result of the high concentration of organic matter resulted from NPK-chitosan is much lighter in weight than the mineral fraction in soils. Accordingly, the increase in the organic fraction decreases the total weight and bulk density of the soil. Concerning soil moisture constants, all treatments significantly increased field capacity and available water compared to control. This increase was due to improvement of the soil aggregates and pores spaces which allowed the free movement of water within the soil thereby, increasing the moisture content at field capacity.


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


2021 ◽  
Vol 26 (02) ◽  
pp. 224-230
Author(s):  
Rizwan Latif

Peanut (Arachis hypogaea L.) is the common cash crop of the rainfed areas. Appropriate management practices are very important to get better yield of peanut in sandy loam soil. A field study was carried out during the growing seasons of 2018 and 2019 to evaluate the effect of poultry manure (PM) (37.1 t ha-1), farmyard manure (FYM) (49.4 t ha-1), gypsum (GYP) (2.5 t ha-1), liquid humic acid (HA) (49.4 L ha-1) and co-application of GYP (1.2 t ha-1) and FYM (24.7 t ha-1) on peanut yield, quality and soil physical properties. Application of FYM, PM, HA and GYP (alone or in combination) significantly improved peanut yield, quality and soil physical properties. The combined application of GYP and FYM proved most effective (P ≤ 0.05) in improving the peanut yield (no. of pods per plant, 100 seed weight etc), quality (crude protein and oil content) and soil physical properties (moisture percentage, infiltration rate and bulk density). The combined application of GYP and FYM increased the pods yield by 67 and 65% during 2018 and 2019, respectively than control. Crude proteins (21%) and oil contents (9.0%) were also substantially increased in the combined application. Moreover, the combined application of GYP and FYM significantly retained the soil moisture and reduced bulk density of soil. Present findings suggest that integrated use of FYM and GYP under field conditions could improve the crop productivity, crude protein, oil contents, moisture percentage, and reduce the bulk density of soil thus improving overall soil health. © 2021 Friends Science Publishers


Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 307 ◽  
Author(s):  
M. S. Lorimer ◽  
L. A. Douglas

The effects of 5 management practices (native forest, native pasture, phalaris pasture, crop-pasture rotation, and continuous cropping), applied prior to sowing wheat seeds, on the distribution of wheat roots and associated grain yields were studied. The grain yield from the 5 treatments decreased in the following order: crop-pasture rotation > native pasture > phalaris pasture > native forest > continuous cropping, and this was directly related to the distribution of the wheat roots in the respective treatment plots. A high incidence of root disease in the phalaris pasture plots severely restricted root distribution and grain yield despite the apparent ‘ideal’ soil conditions for plant growth. The implications of current land management practices, which lead to the formation of plough-pans and reduced root penetration into the subsoil, are discussed in terms of future wheat production on this soil type.


1989 ◽  
Vol 69 (3) ◽  
pp. 443-449 ◽  
Author(s):  
C. CHANG ◽  
C. W. LINDWALL

This study was conducted to compare the long-term (20 yr) effects of conventional tillage, minimum tillage and no-till on various soil-water related properties within the tilled layer (0–30 and 30–60 mm) and immediately below the tilled layer (90–120 mm) under a spring cereal-summerfallow rotation cropping system. Parameters measured included saturated hydraulic conductivity, saturation percentage, plant-available water-holding capacity, large pore porosity, bulk density, and infiltration rate of the soil. Tillage treatment effects on these soil properties in each of the four sampling periods were not significantly different. The confidence interval test showed some temporal changes in these soil physical properties, of which hydraulic conductivity was the most affected. In the summerfallow field, regardless of the previous cereal crops, the steady infiltration rate was significantly lower in the soil under conventional tillage than with that under no-till. The results indicate that the surface soil structure was most stable under no-till. In the fresh stubble field, the type of cereal crop had an effect on the infiltration rate of the soil. The mean infiltration rate was higher in the summerfallow field than in the fresh stubble field and also was higher in the fresh barley stubble than in the fresh wheat stubble. Except for infiltration rates, there is no significant advantage of one tillage method over the other with respect to the soil physical properties measured in this Brown Chernozemic clay loam soil. Key words: No-till, minimum tillage, hydraulic conductivity, bulk density, infiltration


2015 ◽  
Vol 29 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Samuel Idoko Haruna ◽  
Nsalambi Vakanda Nkongolo

Abstract Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.


1963 ◽  
Vol 43 (1) ◽  
pp. 178-185
Author(s):  
J. R. Lessard ◽  
H. A. Hamilton ◽  
M. Levesque ◽  
S. J. Bourget

An experiment was initiated in 1955 to study the effect of plowing to depths of 6, 12 and 24 inches on the physical properties of a Guyenne clay soil. A 4-year crop rotation was established. Soil core samples were taken in 1957, 1959 and 1960 and determinations of bulk density and porosities were made. The soil particle-size distribution was determined for all tillage treatments in 1960.Plowing to a depth of 24 inches resulted in higher bulk density and lower non-capifiary porosity values in the surface 6-inch soil layer of soil than the 6- and 12-inch plowing. The 18- to 24-inch soil layer was less packed than the corresponding undisturbed layers at the same depth, as a result of deep tillage. The clay content of the 0- to 6-inch layer of soil was also increased by 24-inch plowing. Year-to-year data showed the importance of seasonal climatic conditions on the soil physical properties.


Sign in / Sign up

Export Citation Format

Share Document