Organic production of raspberries in high tunnels in Sweden, 2008-2014

2016 ◽  
pp. 211-216 ◽  
Author(s):  
B. Svensson
2019 ◽  
Vol 246 ◽  
pp. 928-941 ◽  
Author(s):  
M.Z. Zheng ◽  
B. Leib ◽  
D.M. Butler ◽  
W. Wright ◽  
P. Ayers ◽  
...  

2020 ◽  
Vol 100 (4) ◽  
pp. 401-414
Author(s):  
Yun Kong ◽  
David Llewellyn ◽  
Youbin Zheng

The potential market for locally produced organic cherry tomatoes (Solanum lycopersicum var. cerasiforme) is large in Canada, but it is challenging to grow this warm-season crop in open fields (OFs) due to the cool and short growing season. To test the feasibility of using high tunnels (HTs) for improving organic production in southern Ontario, plant growth, fruit yield and quality, and pest and disease incidence were compared for ‘Sarina hybrid’ cherry tomato among three production systems: OF, HT, and high tunnel with anti-insect netting (HTN) in Guelph, ON, in 2015 and 2016. Averaged over the 2 yr, the highest marketable fruit yield was achieved in HT (≈70 t ha−1), followed by HTN (≈50 t ha−1), with the lowest yield obtained in OF (≈24 t ha−1). Compared with OF, increased plant growth, extended harvest period, reduced pest numbers, and increased proportion of marketable fruits all led to the higher marketable yields in HT and HTN. Under HT vs. OF, fruit quality attributes, such as soluble solids content and post-harvest water loss, were better in 2015 and similar in 2016. Although the insect netting reduced pest incidence and disease infection, fruits harvested from HTN had lower yield, smaller size, and lower soluble solids content than those from HT in both years. Therefore, HT can be recommended for organic production of cherry tomatoes in southern Ontario.


2010 ◽  
Vol 20 (4) ◽  
pp. 718-723 ◽  
Author(s):  
Christopher I. Vincent ◽  
M. Elena García ◽  
Donn T. Johnson ◽  
Curt R. Rom

The broad mite (Polyphagotarsonemus latus) was found in association with leaf-curling symptoms on primocane-fruiting blackberry (Rubus rubus) in Arkansas in 2007–2009. Broad mite had not been previously reported on blackberry. The plots sampled in this study were part of a study comparing harvesting in the fall versus harvest in spring and fall, high tunnels versus ambient conditions, and three genotypes, all under organic production. Leaves were sampled, broad mites per leaf counted, and leaf area and trichome density measured. Results indicated that broad mite is capable of overwintering in a moderate temperate climate and that it reduces leaf area of primocane-fruiting blackberry. The fall-only harvest system had fewer broad mites than fall and spring harvest. There were a range of genotype effects on broad mite populations, including one genotype, ‘Prime-Jan®’, on which broad mite populations remained low, and one genotype, APF-46, on which mite populations grew significantly. Observations indicate that the broad mite may be a pest of ‘Prime-Ark® 45’, another primocane-fruiting cultivar.


2012 ◽  
Vol 22 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Russell W. Wallace ◽  
Annette L. Wszelaki ◽  
Carol A. Miles ◽  
Jeremy S. Cowan ◽  
Jeffrey Martin ◽  
...  

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.


2008 ◽  
Vol 18 (1) ◽  
pp. 154-157 ◽  
Author(s):  
Elsa Sánchez ◽  
William J. Lamont ◽  
Michael D. Orzolek

Mulches usable in organic production were evaluated in high tunnels for their ability to suppress weeds. Mulch treatments were shredded newspaper, sheets of newspaper, straw, and a no-mulch control that was weeded once. Four cucumber (Cucumis sativus) cultivars were also evaluated. Yields were highest and fruit largest from ‘Sweet Marketmore’ and lowest from ‘Lemon’. Yields were unaffected by mulch treatments. Weed populations were highest in control plots and lowest in those with shredded newspaper. Cultivars did not affect weed populations. Sheets of newspaper degraded the most, followed by shredded newspaper and straw. Yields were not influenced by any mulch treatment, indicating weed populations remained below yield-depressing levels regardless of treatment.


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Jennifer Reeve ◽  
Dan Drost

Interest in unheated plastic film-covered high tunnels to extend the growing season of high-value fruits and vegetables is growing rapidly, but sustainable soil management in intensively managed high tunnels is challenging. Yields, fruit quality, and soil quality in transition organic and conventional tomato were measured over the course of three growing seasons. Nitrogen (N) was applied at the rate of 112, 168, and 224 kg total N/ha in the form of chicken manure compost to the organic treatments and a polymer-coated slow-release urea fertilizer in the conventional treatments. Marketable yield of organically grown tomatoes was lower in Year 1 but equaled conventional tomatoes in Years 2 and 3. Soil quality as measured by total carbon (C) and N and microbial activity was significantly greater in organic tomato production at the end of the study. Significant phosphorus (P) and potassium (K) applied with the composted manure resulted in high soil P and K levels in organically managed high tunnels after just 3 years of application. Although compost is the most economical organic fertilizer and results in significant benefits in soil quality during the transition phase to organic production, a maintenance fertility plan is needed once available soil P reaches adequate to high levels. Combinations of compost and high N, low P organic fertilizers are needed for optimum maintenance fertility strategy for organic tunnel house production.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1071B-1071
Author(s):  
Adam Montri ◽  
William J. Lamont ◽  
Michael D. Orzolek

High tunnels offer growers in temperate regions the ability to extend the production season. Past research has shown that these low-input structures also reduce disease and pest pressure. These characteristics make high tunnels extremely attractive to organic growers. Tomatoes (Lycopersiconesculentum Mill.) are the crop most often produced in high tunnels in Pennsylvania and many producers are interested in combining both high tunnel and organic production methods. Growers may be hesitant to transition to organic production due to conceptions concerning reduced yields specifically during the 3-year transition period to USDA certified organic status. A field trial investigating tomato production in high tunnels during the first year of organic transitioning was conducted in 2004 at The Penn State Center for Plasticulture, Russell E. Larson Agricultural Research Center, Rock Springs, Pa. The objective of this research was to evaluate yield of the four cultivars Big Beef, Mountain Fresh, Plum Crimson, and Pink Beauty in an organic system relative to a scheduled fertilization/irrigation regime and a fertilization/irrigation regime employed using T-Systems International's Integrated Agronomic Technology. Data collected included total weight, total fruit number, weight by grade, fruit number by grade, total marketable yield, and fertilizer and water usage. Yield across cultivars ranged from 4.96 kg/plant to 6.83 kg/plant. `Pink Beauty' exhibited the lowest yields in both treatments, while `Plum Crimson' and `Mountain Fresh' exhibited the highest yields in the IAT and scheduled treatments, respectively. This experiment will be repeated in 2005 to further evaluate the performance of these cultivars.


2020 ◽  
Vol 30 (4) ◽  
pp. 492-503
Author(s):  
Craig J. Frey ◽  
Xin Zhao ◽  
Jeffrey K. Brecht ◽  
Dustin M. Huff ◽  
Zachary E. Black

Although grower interest in high tunnel tomato (Solanum lycopersicum) production has increased in recent years, systematic high tunnel research conducted in humid, subtropical regions has been limited. The potential of tomato grafting to mitigate biotic and abiotic stresses makes it complementary to high-value production systems in high tunnels. In this 2-year study, grafted vs. nongrafted organic tomato production in high tunnels and open fields was investigated to determine possible synergistic effects of these two technologies. In 2016, high tunnels resulted in a significant increase of total and marketable yields, by 43% and 87%, respectively, over open field production. Grafting also significantly increased total and marketable yields over nongrafted plants by 34% and 42%, respectively. Cultivar effects demonstrated greater benefits with the implementation of high tunnel and grafting technologies for ‘Tribute’ (a beefsteak-type tomato) than for ‘Garden Gem’ (a plum-type tomato), as the increase in marketable yield was 33% greater for ‘Tribute’ in high tunnels and 45% greater for ‘Tribute’ with grafting. In 2017, a delayed effective transplanting date and the lack of high tunnel summer season extension produced results that were generally cultivar specific. While grafting increased the total yield of both cultivars (by 18%), marketable yield was increased by grafting only for ‘Tribute’ in high tunnels (by 42%). Additionally, high tunnels improved marketable yield of ‘Tribute’ by 129% but had no effect on ‘Garden Gem’. This demonstrated the consistent trend of the beefsteak-type tomato benefiting more from the combination of high tunnel and grafting technologies than the plum-type tomato. High tunnels reduced fruit decay and cracking by up to 71% compared with open field production. Stink bug (Pentatomidae) damage had the greatest impact on marketable yields each season, reaching 13% and 34% of total yields in 2016 and 2017, respectively, and was unaffected by high tunnel production or grafting. This study revealed the benefits of integrating high tunnel and grafting technologies for enhancing organic production of fresh-market tomato in the humid subtropics, and demonstrated more research is warranted to establish regional planting dates and further optimize this high-value cropping system.


2013 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Marianne Powell ◽  
Jeremy Cowan ◽  
Carol Miles ◽  
Debra Ann Inglis

Incidence of gray mold and lettuce drop, and yield of six cultivars representing market classes Boston/Crisphead, Leaf, and Romaine, were evaluated in open ended high tunnel and open field organic production systems near Mount Vernon, WA from 2010 to 2012. Each year seedlings were transplanted in April and heads harvested in June/July. In 2010, Romaine types had significantly (P < 0.0001) greater incidence of gray mold (caused by Botrytis cinerea) than other types. In 2011, incidence of gray mold was significantly (P = 0.004) greater in high tunnel than open field plots, and greatest in high tunnels when fog persisted. All cultivars were equally susceptible to lettuce drop (caused by Sclerotinia sclerotiorum), although in 2012, incidence was significantly (P < 0.0001) greater in high tunnel than open field plots. ‘Green Star’ (Leaf type) had reduced incidence of gray mold and lettuce drop in 2010 and 2011. Incidence of tipburn was significantly (P = 0.032 and P = 0.001, respectively) greater in the high tunnels in 2011 and 2012 compared to the open field. Total yield (kg) was greater in the open field in 2012, but not in 2011 and 2010. Accepted for publication 8 July 2013. Published 22 September 2013.


Sign in / Sign up

Export Citation Format

Share Document