Effect of the nutrient solution electrical conductivity (EC) on the growth, development and nutrient content of Viola tricolor var. hortensis grown in perlite

2021 ◽  
pp. 149-156
Author(s):  
A. Chrysargyris ◽  
P. Xylia
HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 982A-982
Author(s):  
Paolo Sambo ◽  
Franco Sannazzaro ◽  
Michael Evans

In order to evaluate alternative rooting media as a substitute to sphagnum peat in tomato transplant, fresh rice hulls (2 and 4 mm particle size), perlite, and peat were compared. In the same experiment, four nutrient solutions differing in electrical conductivity [(EC) 2.5, 3.5, 4.5 and 6.0 mS/cm], but not in nutrient content, were used. Seed of tomato (Lycopersium esculentum L.) `Brigade' (ASGROW) were sown in 55 × 35 × 6.5 cm polystyrene transplant trays containing 336 cells (15 mL) and filled with the root substrates. The trays were placed in a glass-glazed greenhouse. Trays were kept under intermittent mist for 6 days and then fertilized twice per week with 2.6 L per tray of solution. A split-plot design with three replications was used with nutrient solution serving as the main plot and root substrates serving as the subplots. During the growing cycle (once a week) and when plants were ready to transplant (16 cm tall, with an average of five to seven true leaves), stem diameter, hypocotyl length, plant height, number of true leaves, fresh shoot weight, and dry shoot weight were measured. Also at transplant, root fresh and dry weight and above- and below-ground biomass were analyzed to determine N, P, K, Ca, Mg, Fe, and Mn content. Plants grown in rice hulls were as marketable as those in peat, but showed a higher content in N, K, and Mn. Increased nutrient solution affected not only dry matter accumulation, but also stem diameter and plant hight, which were greater in plants grown with high EC.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1237
Author(s):  
Antonios Chrysargyris ◽  
Spyridon A. Petropoulos ◽  
Dejan Prvulovic ◽  
Nikolaos Tzortzakis

Abiotic factors in nutrient solutions (NSs), such as salinity and high electrical conductivity (EC), may adversely alter plant growth and crop performance. However, there are medicinal/aromatic plants which can not only withstand these adverse conditions, but which can also increase their productivity or even enhance their quality in such conditions. As fresh water sources suitable for irrigation are becoming more and more limited, the use of low-quality water sources and hydroponic growing systems have been suggested as the main alternatives. Towards that direction, this study aims to evaluate the effect of high EC levels in NSs on geranium (Pelargonium graveolens L’Hér.) and common verbena (Verbena officinallis L.) plants cultivated in a soilless (perlite) hydroponics system. Plants were irrigated with a full nutrient solution of EC 2.1 dS m−1 and pH 5.8 until they reached a uniform size. Then, three treatments were applied, namely: (a) a control treatment with an EC of 2.1 dS m−1 in the NS, (b) a high-salinity NS created by adding 75 mM of NaCl (EC under 8.5 dS m−1) and (c) a concentrated NS with an EC of 8.5 dS m−1. In pelargonium, high salinity decreased the total phenolic and total flavonoid contents; antioxidant capacity; N, K, Mg and P content; as well as chlorophyll fluorescence, compared to the control treatment. On the other hand, increased salinity levels increased the Na and Ca content and stomatal resistance. In common verbena, salinity decreased total phenolic content and chlorophyll fluorescence but increased total flavonoid content; antioxidants; leaf K, P, Na, Cu and Zn content; and stomatal resistance, compared to the control. In both species, high EC did not affect polyphenols, flavonoids or antioxidants, whereas it increased stomatal resistance and nutrient accumulation in the leaves, and decreased chlorophyll fluorescence compared to the control treatment. Damage indices, indicated by lipid peroxidation, hydrogen peroxide production and the elevation of enzymes’ antioxidant activities, were evidenced in both saline- and high-EC-treated plants. In conclusion, despite having the same EC levels in the nutrient solution, it seems that ionic stress caused by high mineral concentrations in the nutrient solution had less severe effects on the tested plants than the relevant osmotic stress caused by high salinity due to the addition of NaCl in the nutrient solution.


2011 ◽  
Vol 35 (1) ◽  
pp. 249-254
Author(s):  
José Pereira Carvalho Neto ◽  
Enilson de Barros Silva ◽  
Reynaldo Campos Santana ◽  
Paulo Henrique Grazziotti

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.


2001 ◽  
pp. 503-508 ◽  
Author(s):  
A. Elia ◽  
F. Serio ◽  
A. Parente ◽  
P. Santamaria ◽  
G. Ruiz Rodriguez

2019 ◽  
Vol 20 (2) ◽  
pp. 484-492 ◽  
Author(s):  
Obed I. Hernández-Pérez ◽  
Luis A. Valdez-Aguilar ◽  
Irán Alia-Tejacal ◽  
Andrew D. Cartmill ◽  
Donita L. Cartmill

1998 ◽  
Author(s):  
D. Davis ◽  
N. Dogan ◽  
H. Aglan ◽  
D. Mortley ◽  
P. Loretan

Sign in / Sign up

Export Citation Format

Share Document