scholarly journals Effect of Root Substrates and Nutrient Solution Electrical Conductivity on Tomato Transplant Characteristics

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 982A-982
Author(s):  
Paolo Sambo ◽  
Franco Sannazzaro ◽  
Michael Evans

In order to evaluate alternative rooting media as a substitute to sphagnum peat in tomato transplant, fresh rice hulls (2 and 4 mm particle size), perlite, and peat were compared. In the same experiment, four nutrient solutions differing in electrical conductivity [(EC) 2.5, 3.5, 4.5 and 6.0 mS/cm], but not in nutrient content, were used. Seed of tomato (Lycopersium esculentum L.) `Brigade' (ASGROW) were sown in 55 × 35 × 6.5 cm polystyrene transplant trays containing 336 cells (15 mL) and filled with the root substrates. The trays were placed in a glass-glazed greenhouse. Trays were kept under intermittent mist for 6 days and then fertilized twice per week with 2.6 L per tray of solution. A split-plot design with three replications was used with nutrient solution serving as the main plot and root substrates serving as the subplots. During the growing cycle (once a week) and when plants were ready to transplant (16 cm tall, with an average of five to seven true leaves), stem diameter, hypocotyl length, plant height, number of true leaves, fresh shoot weight, and dry shoot weight were measured. Also at transplant, root fresh and dry weight and above- and below-ground biomass were analyzed to determine N, P, K, Ca, Mg, Fe, and Mn content. Plants grown in rice hulls were as marketable as those in peat, but showed a higher content in N, K, and Mn. Increased nutrient solution affected not only dry matter accumulation, but also stem diameter and plant hight, which were greater in plants grown with high EC.

AGRICA ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 53-62
Author(s):  
Hangrie Jemmy Namserna

       This research was conducted with the aim to find out the effect of the addition of potassium nitrate in lettuce as a medium and critical level of concentration(electrical conductivity)of nutrient solution. Research is organized in the form of a pot experiment. The experimental design used was Complete RandomizedBlock Design (CRBD)) with three replications. The treatment consists of 12 levels of concentrations or nutrient solution electrical conductivity with the addition of potassium nitrate to lettuce plant. The treatment level of concentrations (conductivity) of nutrient is as follows; L0 = 0.00; L1 = 1.25; L2 = 2.50; L3 = 3.75; L4 = 5.00; L5 = 6.25; L6 = 7.50; L7 = 8.75; L8 = 10.00; L9 = 11.25; L10 = 12.50 and L1 = 13, 75 g 100 L-1 water. Value concentrations of electrical conductivity each nutrient solution concentrations are: L0 = 0.06; L1 = 0.26; L2 = 0.46; L3 = 0.66; L4 = 0.86; L5 = 1.06; L6 = 1.26; L7 = 1,46; L8 = 1.66; L9 = 1,86; L10 = 2.06 and L1 = 2.26. dS m-1. The result of the experiment showed that addition of KNO3 highly significant effect on the increase in fresh weight and dry weight of shoot per plant. Fresh weight and oven-dry weight of shoot per plant was significantly increased in a quadratic with increasing concentrations of KNO3are optimum for growth of plant shoot weight were at 12.23 g in 100/of water on electrical conductivity equivalent to 2.01 dS.m-1. The addition of concentration of KNO3to nutrient solution does not affect on N and other nutrient solution on shoot tissue of lettuce plant but the concentrations of P and K in plant shoot tissue were significantly increased linearly with the provision of KNO3.


2011 ◽  
Vol 35 (1) ◽  
pp. 249-254
Author(s):  
José Pereira Carvalho Neto ◽  
Enilson de Barros Silva ◽  
Reynaldo Campos Santana ◽  
Paulo Henrique Grazziotti

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.


2002 ◽  
Vol 20 (2) ◽  
pp. 104-109
Author(s):  
R. Lee Ivy ◽  
Ted E. Bilderback ◽  
Stuart L Warren

Abstract The landscape industry uses containerized plant material throughout the year. Thus, traditional spring potting at many nurseries has changed to potting throughout the year. The objective of this study was to determine the effect of potting date and rate of fertilization on plant growth and mineral nutrient content, substrate electrical conductivity (EC) and pH, and winter injury. To complete this objective, rooted stem cuttings of Ilex crenata Thunb. ‘Compacta’ and Viburnum awabuki K. Koch. ‘Chindo’ were potted in Raleigh, NC, July 17, 1998; September 7, 1998; October 29, 1998; March 25, 1999; and May 13, 1999. Two controlled-release fertilizers [Wilbro/Polyon 15N–1.8P–7.5K (15N–4P2O5–9K2O) and Scotts 23N–1.8P–6.6K (23N–4P2O5–8K2O)] were applied at four rates: a split application with 0.5X incorporated at potting and surface application of the remaining 0.5X six months after potting date [X = manufacturers' recommended rate per 3.8 liter (4 qt) container], and 1X, 1.5X, and 2X incorporated at potting. Plant growth and mineral nutrient content were determined one year after initial potting date. Substrate EC and pH were measured monthly. ‘Compacta’ holly and ‘Chindo’ viburnum potted in September or October were larger than plants potted in March regardless of fertilizer and rates of fertilization. In general, holly and viburnum were smaller when fertilized with 0.5/0.5X compared to 1X regardless of fertilizer and date of potting. Within each rate of fertilization, viburnum potted in September had significantly greater N and P content compared to viburnum potted in March or May. Nitrogen and P content were highly correlated to plant dry weight (r > 0.79, P = 0.0001). Mineral nutrient content of holly responded similarly. No plants were injured by winter temperatures regardless of potting date or rate of fertilization throughout the study period. Plants potted in July, September, or October had the highest substrate EC values in March, whereas plants potted in March or May had highest EC values in August regardless of species, fertilizer or rate of fertilization. Substrate pH was unaffected by date of potting, but pH decreased with increasing rates of fertilization.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 497-503 ◽  
Author(s):  
Joshua R. Gerovac ◽  
Joshua K. Craver ◽  
Jennifer K. Boldt ◽  
Roberto G. Lopez

Multilayer vertical production systems using sole-source (SS) lighting can be used for the production of microgreens; however, traditional SS lighting methods can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources, including high photoelectric conversion efficiencies, narrowband spectral light quality (LQ), low thermal output, and adjustable light intensities (LIs). The objective of this study was to quantify the effects of SS LEDs of different light qualities and intensities on growth, morphology, and nutrient content of Brassica microgreens. Purple kohlrabi (Brassica oleracea L. var. gongylodes L.), mizuna (Brassica rapa L. var. japonica), and mustard [Brassica juncea (L.) Czern. ‘Garnet Giant’] were grown in hydroponic tray systems placed on multilayer shelves in a walk-in growth chamber. A daily light integral (DLI) of 6, 12, or 18 mol·m−2·d−1 was achieved from commercially available SS LED arrays with light ratios (%) of red:green:blue 74:18:8 (R74:G18:B8), red:blue 87:13 (R87:B13), or red:far-red:blue 84:7:9 (R84:FR7:B9) with a total photon flux (TPF) from 400 to 800 nm of 105, 210, or 315 µmol·m−2·s−1 for 16 hours. Regardless of LQ, as the LI increased from 105 to 315 µmol·m−2·s−1, hypocotyl length (HL) decreased and percent dry weight (DW) increased for kohlrabi, mizuna, and mustard microgreens. With increasing LI, leaf area (LA) of kohlrabi generally decreased and relative chlorophyll content (RCC) increased. In addition, nutrient content increased under low LIs regardless of LQ. The results from this study can help growers to select LIs and LQs from commercially available SS LEDs to achieve preferred growth characteristics of Brassica microgreens.


2021 ◽  
Vol 2 (6) ◽  
pp. 2053-2060
Author(s):  
Gusti Ayu Kade Sutariati ◽  
Muhidin ◽  
Nini Mila Rahni ◽  
Gusti Ngurah Adi Wibawa ◽  
La Mudi

Areca nut is widely used as industrial raw material, both for health and cosmetics and as a source of renewable energy. This study aimed to examine the combination of seed bombatriconditioning and LEISA fertilization treatments that were effective in increasing the growth of areca nut seedlings. The research was carried out in the Wua-Wua Kendari Village, from March to July 2021. The study used a split-plot design with a completely randomized design (CRD). The main plot is seed biomatriconditioning treatment which consists of 3 treatments. While the subplots were fertilized with the LEISA technique which consisted of 6 treatments so that 18 treatment combinations were obtained with 3 replications. Observations were made on plant height, number of leaves, stem diameter, number of roots, wet weight and dry weight of shoot. Observational data were analyzed using analysis of variance, followed by the DMRT α0.05 if there was a significant effect. The results showed that seed biomatriconditioning treatment with rhizobacteria integrated with the LEISA technique was able to increase the growth of areca nut seedlings. The integration between L1R biomatriconditioning and the application of organic plus fertilizer + 100% inorganic fertilizer showed a better growth performance of areca nut on plant height, number of leaves, stem diameter, number of roots, wet weight and dry weight of betel nut which were significantly different with control and application 100% inorganic fertilizer, but not significantly different from organic plus fertilizer, organic plus fertilizer + 50% inorganic fertilizer and organic plus fertilizer + 25% inorganic fertilizer. As a conclusion, pre-planting seed treatment with L1R biomatriconditioning is very important to increase areca nut seed germination. To increase the growth of areca nut seedlings, further fertilization needs to be done with organic plus fertilizer or a combination of organic plus fertilizer + 25% inorganic fertilizer.


Author(s):  
Aline das Graças Souza ◽  
Oscar josé Smiderle

The Brazil nut (Bertholletia excelsa H.B.K.) is fast-growing, and can be used in reforestation. However, the use of the species in reforestation is still uncommon, mainly due to production costs, with substrate and fertiliser being the most-costly components. Based on the above, the aim of this study was to evaluate growth and quality in seedlings of the Brazil nut both with and without nutrient solution. The experimental design was completely randomised in a 2 x 10 factorial scheme: treatments with and without the addition of nutrient solution and 10 evaluations at intervals of 45 days. The variables to be analysed were height, stem diameter, dry shoot weight, root dry weight, total dry weight and the Dickson quality index. When analysing shoot dry weight (SDW), a gain of 85% was found from adding the nutrient solution, compared to the absence of nutrient solution, whereas for the variable, root-system dry weight, (RDW) the gain was 43%. The addition of nutrient solution is suggested for accelerating the growth and development of high-quality seedlings of Bertholletia excelsa for commercial use.


Author(s):  
Cut Nur Ichsan ◽  
Bakhtiar Basyah ◽  
Sabaruddin Zakaria ◽  
Efendi Efendi

Drought-flood abrupt alterations (DFAA) is a condition in drought season when sudden rain inundate rice plants. These events are due to the high frequency of extreme climate events that might pose a threat to rice productivity. DFAA causes cumulative stress on rice which affects crop growth and alters dry matter accumulation. This study aims to understand the effect of DFAA to dry matter accumulation by assessing six rice varieties under DFAA. Three treatments were provided such as continuously irrigated as non-water stress (NS) as a control; drought to water stress -35 kPa (DFAA1) followed by sudden flood; drought to severe water stress -70 kPa (DFAA2) followed by abrupt floods; repeated until harvest. The study found that the alteration of dry matter accumulation was determined by root length, root weight, shoot length and shoot weight. Only varieties that are able to increase root depth under water stress fluctuation will be able to maintain the yield. The results of study showed that root depth was positively correlated with shoot length (r = 0.68), shoot weight (r = 0.62), root weight (r = 0.57), percentage of filled grain (r = 0.55) and number of filled grain per hill (r = 0.49). Shoot length was positively correlated with shoot weight (r = 0.83), root weight (r = 0.75) and the number of filled grain (r = 0.62), while shoot weight was only positively correlated with root weight (r = 0.88). This means that only root depth and shoot length can increase the seed setting rate and the number of filled grains per hill. Furthermore, at DFAA2, the percentage of filled grain was highest in Sipulo followed by Bo Santeut, Sanbei, Towuti and Situ Patenggang, which mean that varieties with deeper and heavier root dry weight can maintain higher yields than shallow and low root dry weight. The result of the study may allow to select rice varieties that are resistant to multilevel water-stress and able to maintain the potential yield, by looking at root depth, root dry weight, and through their grain yield in general. These traits could become key indicators for resistance to DFAA stress in rice. It is also necessary to pay attention to the fluctuation of soil water content in critical phases, especially in the reproductive phase and grain filling


2014 ◽  
Vol 1073-1076 ◽  
pp. 1620-1623
Author(s):  
Xiao Hou Shao ◽  
Mao Mao Hou ◽  
Jing Nan Chen ◽  
You Bo Yuan ◽  
Fu Zhang Ding

In order to explore the effects of water-nitrogen coupling on dry matter and nutrient accumulation of flue-cured tobacco, 9 treatments with different lowest limits and nitrogen fertilizer amount were designed, and the distribution and accumulation of dry matter and nutrient (N, P and K) of flue-cured tobaccos under water-nitrogen coupling treatments were observed. Results showed that: (1) High irrigation amount could not certainly increase the dry matter accumulation of tobacco root, but which was beneficial to the dry matter accumulation of whole tobacco plant. (2) Dry weight proportion of flue-cured tobacco leaves was highest, which was above 55% among the treatments. (3) Higher water and nitrogen promoted the nutrient accumulation of flue-cured tobaccos, nutrient content of W3N3, W3N2 and W2N2 was higher compared to other treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2310
Author(s):  
Yang Yang ◽  
Wenxin Zha ◽  
Kailei Tang ◽  
Gang Deng ◽  
Guanghui Du ◽  
...  

Hemp is a multipurpose crop that is cultivated worldwide for fiber, oil, and cannabinoids. Nitrogen (N) is a key factor for getting a higher production of hemp, but its application is often excessive and results in considerable losses in the soil–plant–water continuum. Therefore, a rational N supply is important for increasing N efficiency and crop productivity. The main objective of this paper was to determine the responses of four hemp cultivars to different levels of exogenous-N supply as nutrient solution during the vegetative growing period. The experiment was conducted at Yunnan University in Kunming, China. Yunma 1, Yunma 7, Bamahuoma, and Wanma 1 were used as the experimental materials, and five N supplying levels (1.5, 3.0, 6.0, 12.0, and 24.0 mmol/L NO3-N in the nutrient solution) were set by using pot culture and adding nutrient solution. The root, stem, and leaf of the plant were sampled for the determination of growth indexes, dry matter and N accumulation and distribution, and physiological indicators. The plant height, stem diameter, plant dry weight, and plant N accumulation of four hemp cultivars were significantly increased with the increase in exogenous-N supply. Root/shoot dry weight ratios, stem mass density, and N use efficiency decreased significantly with the increase in exogenous-N supply. Nitrogen accumulation, chlorophyll content, soluble protein content, and nitrate reductase activity in leaves were increased with the increase in exogenous-N supply. Among the four indexes, the increase in N accumulation was more than the increase in NR activity. The activities of superoxide dismutase and peroxidase in leaves were increased first and then decreased with the increase in exogenous-N supply, with the maximum value at N 6.0 mmol/L, while the content of malondialdehyde in leaves increased significantly when the level of exogenous-N supply exceeded 6.0 mmol/L. These results revealed that increasing the exogenous-N supply could improve the plant growth, dry matter accumulation, and N accumulation in hemp during the vegetative growth period, but N supply should not exceed 6.0 mmol/L. Among four hemp cultivars, Wanma 1 performed well at 6.0 mmol/L N application.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 515B-515
Author(s):  
D.R. Edwards ◽  
M.A. Dixon

A concern with the greenhouse production of horticultural commodities, particularly those grown in the ground, is the difficulty in managing nutrient runoff. Alstroemeria, a heavy-feeding crop that is nearly always grown in soil, were planted into 26.5-L pots with a medium of LECA. Greenhouse experiments were designed to examine flowering stem production, quality, and nutrient flux under nutrient solution reuse (closed system) and with one of three levels of nutrition (EC of 2.1, 1.6 and 1.1 mS/cm). Plants in the closed treatments were set on troughs sloped towards separate 24-L reservoirs. The control was an open drainage system fed at 2.1 mS/cm. The reservoirs were kept at a constant volume with the addition of water after every irrigation; nutrients were added to restore the EC to demand levels. Stems were harvested twice per week and the nutrient content of the reservoirs were analyzed biweekly by ion chromatography. Data were analyzed as an RCBD with four treatments and blocks. Analysis of data from the preliminary experiment (29 May to 3 Aug. 1998) indicated number of stems and cymes were similar among treatments. Stem length, dry weight, and number of florets were depressed below the control only in lowest fed treatment. Nutrient application was reduced markedly, by up to 1000-fold in the closed vs. the open production system.


Sign in / Sign up

Export Citation Format

Share Document