R. M. Kleinpell's Zones And Stages: An Oppelian Biostratigraphic Solution To A Challenge In The Search For Petroleum In California

2000 ◽  
Vol 19 (2) ◽  
pp. 161-174 ◽  
Author(s):  
William Berry

Robert M. Kleinpell (1905-1986) brought new concepts into oil exploration in California in the late 1920s that enhanced oil recovery. He used basic biostratigraphic principles developed by Albert Oppel (1831-1865) in a study of the ammonite-bearing Jurassic successions in Europe to solve a challenge that faced California's petroleum industry in the 1920s. That challenge was how to recognize a specific stratigraphic position in a sequence of unseen and seemingly unfossiliferous, homogenous California Tertiary strata being perforated by oil-well drilling equipment and how to identify oil-bearing strata from well to well. Kleinpell's insightful use of relevant biostratigraphic principles led to recovery of many millions of barrels of petroleum from California's Tertiary stratigraphic succession. Despite considerable economic success, rarely have geologists outside California's petroleum industry recognized the significance of Kleinpell's economically rewarding application of scientific principle. Furthermore, rarely have American geologists noted the similarity between biostratigraphic practice of most Europeans and that of Kleinpell.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


Author(s):  
Temitope Ogunkunle ◽  
Adesina Fadairo ◽  
Vamegh Rasouli ◽  
Kegang Ling ◽  
Adebowale Oladepo ◽  
...  

AbstractThe limitation in the formulation and application of synthetic surfactants in petroleum industry is owing to their high cost of production or importation and their associated toxic effect which have been proven to be harmful to the environment. Hence it is vitally imperative to develop an optimum surfactant that is cost-effective, environmentally safe (biodegradable) and equally serves as surface acting agent. This study discusses the production of microbial produced bio-surfactant and its application in enhanced oil recovery. The bacteria Pseudomonas sp. were isolated from urine and allow to feed on neem seed oil as the major carbon source and energy. The crude bio-surfactant produced from the fermentation process was used to prepare three (3) solutions of bio-surfactants at different concentrations of 5 g/500 mL, 10 g/500 mL and 15 g/500 mL, and their suitability for enhanced oil recovery (EOR) was evaluated. Reservoir core samples and crude oil collected from the Niger Delta field were used to evaluate the EOR application of the microbial-derived surfactants. The sets of experimental samples were carried out using core flooding and permeability tester equipment, and the results obtained were compared with conventional waterflooding experiments. The three bio-surfactant concentrations were observed to recover more oil than the conventional waterflooding method for the two core samples used. Optimum performance of the produced microbial-derived surfactant on oil recovery based on the concentrations was observed to be 10 g/500 mL for the two samples used in this study. Therefore, eco-friendly bio-surfactant produced from neem seed oil using Pseudomonas sp. has shown to be a promising potential substance for enhanced oil recovery applications by incremental recoveries of 51.9%, 53.2%, and 29.5% at the concentration of 5, 10, and 15 g/500 mL and 24.7%, 28.7%, and 20.1% at concentration of 5, 10, and 15 g/500 mL for the two core samples, respectively.


1996 ◽  
Vol 32 (6) ◽  
pp. 559-562
Author(s):  
V. A. Dotsenko

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chen Sun ◽  
Hu Guo ◽  
Yiqiang Li ◽  
Kaoping Song

Recently, there are increasing interests in chemical enhanced oil recovery (EOR) especially surfactant-polymer (SP) flooding. Although alkali-surfactant-polymer (ASP) flooding can make an incremental oil recovery factor (IORF) of 18% original oil in place (OOIP) according to large-scale field tests in Daqing, the complex antiscaling and emulsion breaking technology as well as potential environment influence makes some people turn to alkali-free SP flooding. With the benefit of high IORF in laboratory and no scaling issue to worry, SP flooding is theoretically better than ASP flooding when high quality surfactant is available. Many SP flooding field tests have been conducted in China, where the largest chemical flooding application is reported. 10 typical large-scale SP flooding field tests were critically reviewed to help understand the benefit and challenge of SP flooding in low oil price era. Among these 10 field tests, only one is conducted in Daqing Oilfield, although ASP flooding has entered the commercial application stage since 2014. 2 SP tests are conducted in Shengli Oilfield. Both technical and economic parameters are used to evaluate these tests. 2 of these ten tests are very successful; the others were either technically or economically unsuccessful. Although laboratory tests showed that SP flooding can attain IORF of more than 15%, the average predicted IORF for these 10 field tests was 12% OOIP. Only two SP flooding tests in (SP 1 in Liaohe and SP 7 in Shengli) were reported actual IORF higher than 15% OOIP. The field test in Shengli was so successful that many enlarged field tests and industrial applications were carried out, which finally lead to a commercial application of SP flooding in 2008. However, other SP projects are not documented except two (SP7 and SP8). SP flooding tests in low permeability reservoirs were not successful due to high surfactant adsorption. It seems that SP flooding is not cost competitive as polymer flooding and ASP flooding if judged by utility factor (UF) and EOR cost. Even the most technically and economically successful SP1 has a much higher cost than polymer flooding and ASP flooding, SP flooding is thus not cost competitive as previously expected. The cost of SP flooding can be as high as ASP flooding, which indicates the importance of alkali. How to reduce surfactant adsorption in SP flooding is very important to cost reduction. It is high time to reevaluate the potential and suitable reservoir conditions for SP flooding. The necessity of surfactant to get ultra-low interfacial tension for EOR remains further investigation. This paper provides the petroleum industry with hard-to-get valuable information.


2020 ◽  
Vol 18 (1) ◽  
pp. 31-40
Author(s):  
Victoria Mousalli ◽  
Johnny Bullón ◽  
Franklin Franklin

In the Enhanced Oil Recovery (EOR) methods, particularly in surfactant flooding, many tests have been performed, many scientific papers have been written and many findings have been found; however, there are still a lot of questions without any answers. Some of them are the interactions between the different reservoir components and the chemical flooding that are used in the EOR process. Nowadays, the main problem in the petroleum industry is the economic feasibility. Some authors report that the surfactant lost by the adsorption in the porous media increases the amount of surfactant that is needed. Understanding and controlling the amount of surfactant adsorbed directly, affects the project economics. It is crucial to the economic success of an EOR project that adsorption is reduced in the project design; to do so it requires an understanding of surfactant adsorption mechanisms. One of the factors that affect the surfactant adsorption in porous media is the mineralogy of the reservoir by the Cation Exchange Capacity (CEC) due to clays minerals present in the mineral composition of the reservoir.


2019 ◽  
Vol 29 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Mateus Ribeiro Veiga de Moura ◽  
Rosângela Barros Zanoni Lopes Moreno

AbstractXanthan gum is a biopolymer used in several different industries for a variety of applications. In the Petroleum Industry, xanthan gum has been applied in Enhanced Oil Recovery (EOR) methods for mobility control due to its Non-Newtonian rheological behavior, relative insensitivity to salinity and temperature compared to other conventional synthetic polymers, as well as its environmentally-friendly characteristics. As challenging reservoir conditions arise, candidate polymers should meet the screening factors for high salinity, high temperatures and heterogeneous reservoirs. This paper aims to evaluate the effects of temperature and monovalent salts on the rheological behavior of xanthan gum for Enhanced Oil Recovery purposes. We tested polymer solutions with brine salinities of 20,000/110,000/220,000 ppm of Sodium Chloride in a rheometer at temperatures of 23, 50, and 77°C. The results acquired showed that temperature plays a key role in viscosity and salinity protected the solution viscosity against negative thermal effects, unusually a turning point is observed where the increase in the monovalent salt content enhanced the polymeric solution viscosity. Such investigations coupled with a detailed discussion presented in the paper contribute to understand critical aspects of xanthan gum and its capability to provide basic requirements that fit desired screening factors for EOR.


2014 ◽  
Vol 1051 ◽  
pp. 1023-1027
Author(s):  
Xiao Min Yang ◽  
Bin Yu Yan ◽  
Zong Rui Yang

Commingling is employed in the petroleum industry to enhance oil recovery and reduce costs. It is of great importance to monitor the production of each oil well oilfields. Nowadays, more and more oilfields use chromatographic fingerprint to estimate single-zone production allocation. In order to insure the efficiency and affectivity of the commingled oil well exploiting, the productivity contribution of every single layer must be acquainted. Kernel partial least squares (KPLS) is a promising regression method for tackling nonlinear systems because it can efficiently compute regression coefficients in high-dimensional feature spaces by means of nonlinear kernel functions. Unlike other nonlinear partial least squares (PLS) techniques KPLS does not entail any nonlinear optimization procedures and has a complexity similar to that of linear PLS. Using the technology of crude oil chromatography fingerprint, an algorithm for predicting productivity contribution based on KPLS is proposed. The validity of the method is proved by laboratory artificial experiments. The maximum absolute error of predicted and real proportion is less than 10%. The model can also be applied to other wells which are similar to those used in the experiment. The experiment results show the prediction model is feasible.


Sign in / Sign up

Export Citation Format

Share Document