scholarly journals Microbial-derived bio-surfactant using neem oil as substrate and its suitability for enhanced oil recovery

Author(s):  
Temitope Ogunkunle ◽  
Adesina Fadairo ◽  
Vamegh Rasouli ◽  
Kegang Ling ◽  
Adebowale Oladepo ◽  
...  

AbstractThe limitation in the formulation and application of synthetic surfactants in petroleum industry is owing to their high cost of production or importation and their associated toxic effect which have been proven to be harmful to the environment. Hence it is vitally imperative to develop an optimum surfactant that is cost-effective, environmentally safe (biodegradable) and equally serves as surface acting agent. This study discusses the production of microbial produced bio-surfactant and its application in enhanced oil recovery. The bacteria Pseudomonas sp. were isolated from urine and allow to feed on neem seed oil as the major carbon source and energy. The crude bio-surfactant produced from the fermentation process was used to prepare three (3) solutions of bio-surfactants at different concentrations of 5 g/500 mL, 10 g/500 mL and 15 g/500 mL, and their suitability for enhanced oil recovery (EOR) was evaluated. Reservoir core samples and crude oil collected from the Niger Delta field were used to evaluate the EOR application of the microbial-derived surfactants. The sets of experimental samples were carried out using core flooding and permeability tester equipment, and the results obtained were compared with conventional waterflooding experiments. The three bio-surfactant concentrations were observed to recover more oil than the conventional waterflooding method for the two core samples used. Optimum performance of the produced microbial-derived surfactant on oil recovery based on the concentrations was observed to be 10 g/500 mL for the two samples used in this study. Therefore, eco-friendly bio-surfactant produced from neem seed oil using Pseudomonas sp. has shown to be a promising potential substance for enhanced oil recovery applications by incremental recoveries of 51.9%, 53.2%, and 29.5% at the concentration of 5, 10, and 15 g/500 mL and 24.7%, 28.7%, and 20.1% at concentration of 5, 10, and 15 g/500 mL for the two core samples, respectively.

2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


Author(s):  
D. Kosini ◽  
E. N. Nukenine ◽  
K. H. Tofel ◽  
J. W. Goudoungou ◽  
D. J. Langsi ◽  
...  

The response of pests to the effects of a botanical insecticide can vary spatially and temporally. To test whether efficacy of botanicals differed spatially, the insecticidal efficacy of Gnidia kaussiana and Ocimum canum against Callosobruchus maculatus was investigated in two different agro-ecological zones of Cameroon, i.e. Maroua and Ngaoundéré (sudano-sahelian and sudano-guinean zones, respectively). Experiments were, therefore, conducted to determine the insect mortality, progeny production, grain damage and weight loss in cowpea. G. kaussiana was more effective against C. maculatus in Maroua (LD50 = 0.12 g/kg at 6th day of exposure) than in Ngaoundéré (LD50 = 4.35 g/kg at 6th day of exposure). Moreover, it was more toxic than O. canum extract and neem seed oil (reference), irrespective to the agro-ecological zones. Overall, the performance of O. canum did not vary significantly between the two zones, and was slightly more active (LD50 = 4.66 g/kg) than the reference insecticide neem seed oil (LD50 = 4.89 g/kg) in Ngaoundéré in contrast to the results recoded in Maroua (LD50 = 1.44 g/kg and 2.60 g/kg, respectively for neem seed oil and O. canum at 6 days post exposure). In view of the above, there were some discrepancies in extract performance between Maroua and Ngaoundéré. Thus, the establishment of dose rates of insecticidal products formulated from G. kaussiana must be specific to an environment in contrast to those from O. canum.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2014 ◽  
Vol 1 (3) ◽  
pp. 66 ◽  
Author(s):  
ManasRanjan Naik ◽  
Divya Agrawal ◽  
Rasmirekha Behera ◽  
Ayon Bhattacharya ◽  
Suhasini Dehury ◽  
...  

Author(s):  
Dominic O Onukwuli ◽  
Jonah C Umeuzuegbu ◽  
Callistus N Ude ◽  
Chukwuemeka C Nwobi‐Okoye

Sign in / Sign up

Export Citation Format

Share Document