scholarly journals The Queueing Model MAP|PH|1|N with Feedback Operating in a Markovian Random Environment

2016 ◽  
Vol 34 (2) ◽  
Author(s):  
A.N. Dudin ◽  
A.V. Kazimirsky ◽  
V.I. Klimenok ◽  
L. Breuer ◽  
U. Krieger

Queueing systems with feedback are well suited for the description of message transmission and manufacturing processes where a repeated service is required. In the present paper we investigate a rather general single server queue with a Markovian Arrival Process (MAP), Phase-type (PH) service-time distribution, a finite buffer and feedback which operates in a random environment. A finite state Markovian random environment affects the parameters of the input and service processes and the feedback probability. The stationary distribution of the queue and of the sojourn times as well as the loss probability are calculated. Moreover, Little’s law is derived.

1997 ◽  
Vol 34 (01) ◽  
pp. 223-233 ◽  
Author(s):  
J. R. Artalejo ◽  
A. Gomez-Corral

Queueing systems with repeated requests have many useful applications in communications and computer systems modeling. In the majority of previous work the repeat requests are made individually by each unsatisfied customer. However, there is in the literature another type of queueing situation, in which the time between two successive repeated attempts is independent of the number of customers applying for service. This paper deals with the M/G/1 queue with repeated orders in its most general setting, allowing the simultaneous presence of both types of repeat requests. We first study the steady state distribution and the partial generating functions. When the service time distribution is exponential we show that the performance characteristics can be expressed in terms of hypergeometric functions.


2018 ◽  
Vol 189 ◽  
pp. 02006 ◽  
Author(s):  
S K Koh ◽  
C H Chin ◽  
Y F Tan ◽  
L E Teoh ◽  
A H Pooi ◽  
...  

In this paper, a single-server queue with negative customers is considered. The arrival of a negative customer will remove one positive customer that is being served, if any is present. An alternative approach will be introduced to derive a set of equations which will be solved to obtain the stationary queue length distribution. We assume that the service time distribution tends to a constant asymptotic rate when time t goes to infinity. This assumption will allow for finding the stationary queue length of queueing systems with non-exponential service time distributions. Numerical examples for gamma distributed service time with fractional value of shape parameter will be presented in which the steady-state distribution of queue length with such service time distributions may not be easily computed by most of the existing analytical methods.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1797
Author(s):  
Divya Velayudhan Nair ◽  
Achyutha Krishnamoorthy ◽  
Agassi Melikov ◽  
Sevinj Aliyeva

In this paper, we consider two single server queueing systems to which customers of two distinct priorities (P1 and P2) arrive according to a Marked Markovian arrival process (MMAP). They are served according to two distinct phase type distributions. The probability of a P1 customer to feedback is θ on completion of his service. The feedback (P1) customers, as well as P2 customers, join the low priority queue. Low priority (P2) customers are taken for service from the head of the line whenever the P1 queue is found to be empty at the service completion epoch. We assume a finite waiting space for P1 customers and infinite waiting space for P2 customers. Two models are discussed in this paper. In model I, we assume that the service of P2 customers is according to a non-preemptive service discipline and in model II, the P2 customers service follow a preemptive policy. No feedback is permitted to customers in the P2 line. In the steady state these two models are compared through numerical experiments which reveal their respective performance characteristics.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Alexander Dudin ◽  
Sergei Dudin

We consider a single server queue with two types of customers. We propose a discipline of flexible priority in access that combines the features of randomization and the threshold type control. We introduce a new class of distributions, phase-type with failures (PHF) distribution, that generalizes the well-known phase-type (PH) distribution to the case when failures can occur during service of a customer. The arrival flow is described by the marked Markovian arrival process. The service time distribution is of PHF type with the parameters depending on the type of a customer. Customers of both types can be impatient. Behavior of the system is described by the multidimensional Markov chain. Problem of existence and computation of the stationary distribution of this Markov chain is discussed in brief as well as the problem of computation of the key performance measures of the system. Numerical examples are presented that give some insight into behavior of the system performance measures under different values of the parameters defining the strategy of customers access to service.


1997 ◽  
Vol 34 (1) ◽  
pp. 223-233 ◽  
Author(s):  
J. R. Artalejo ◽  
A. Gomez-Corral

Queueing systems with repeated requests have many useful applications in communications and computer systems modeling. In the majority of previous work the repeat requests are made individually by each unsatisfied customer. However, there is in the literature another type of queueing situation, in which the time between two successive repeated attempts is independent of the number of customers applying for service. This paper deals with the M/G/1 queue with repeated orders in its most general setting, allowing the simultaneous presence of both types of repeat requests. We first study the steady state distribution and the partial generating functions. When the service time distribution is exponential we show that the performance characteristics can be expressed in terms of hypergeometric functions.


2014 ◽  
Vol 24 (3) ◽  
pp. 485-501 ◽  
Author(s):  
Chesoong Kim ◽  
Alexander Dudin ◽  
Sergey Dudin ◽  
Olga Dudina

Abstract A multi-server queueing system with two types of customers and an infinite buffer operating in a random environment as a model of a contact center is investigated. The arrival flow of customers is described by a marked Markovian arrival process. Type 1 customers have a non-preemptive priority over type 2 customers and can leave the buffer due to a lack of service. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation of the system we use a generalized phase-type service time distribution. The criterion of ergodicity for a multi-dimensional Markov chain describing the behavior of the system and the algorithm for computation of its steady-state distribution are outlined. Some key performance measures are calculated. The Laplace-Stieltjes transforms of the sojourn and waiting time distributions of priority and non-priority customers are derived. A numerical example illustrating the importance of taking into account the correlation in the arrival process is presented


1986 ◽  
Vol 23 (1) ◽  
pp. 256-260 ◽  
Author(s):  
Robert D. Foley

We present some non-stationary infinite-server queueing systems with stationary Poisson departure processes. In Foley (1982), it was shown that the departure process from the Mt/Gt/∞ queue was a Poisson process, possibly non-stationary. The Mt/Gt/∞ queue is an infinite-server queue with a stationary or non-stationary Poisson arrival process and a general server in which the service time of a customer may depend upon the customer's arrival time. Mirasol (1963) pointed out that the departure process from the M/G/∞ queue is a stationary Poisson process. The question arose whether there are any other Mt/Gt/∞ queueing systems with stationary Poisson departure processes. For example, if the arrival rate is periodic, is it possible to select the service-time distribution functions to fluctuate in order to compensate for the fluctuations of the arrival rate? In this situation and in more general situations, it is possible to select the server such that the system yields a stationary Poisson departure process.


1992 ◽  
Vol 6 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Masakiyo Miyazawa

We are concerned with a burst arrival single-server queue, where arrivals of cells in a burst are synchronized with a constant service time. The main concern is with the loss probability of cells for the queue with a finite buffer. We analyze an embedded Markov chain at departure instants of cells and get a kind of lumpability for its state space. Based on these results, this paper proposes a computation algorithm for its stationary distribution and the loss probability. Closed formulas are obtained for the first two moments of the numbers of cells and active bursts when the buffer size is infinite.


1979 ◽  
Vol 11 (3) ◽  
pp. 644-659 ◽  
Author(s):  
O. J. Boxma

This paper is devoted to the practical implications of the theoretical results obtained in Part I [1] for queueing systems consisting of two single-server queues in series in which the service times of an arbitrary customer at both queues are identical. For this purpose some tables and graphs are included. A comparison is made—mainly by numerical and asymptotic techniques—between the following two phenomena: (i) the queueing behaviour at the second counter of the two-stage tandem queue and (ii) the queueing behaviour at a single-server queue with the same offered (Poisson) traffic as the first counter and the same service-time distribution as the second counter. This comparison makes it possible to assess the influence of the first counter on the queueing behaviour at the second counter. In particular we note that placing the first counter in front of the second counter in heavy traffic significantly reduces both the mean and variance of the total time spent in the second system.


Sign in / Sign up

Export Citation Format

Share Document