scholarly journals Exfoliation the flexible continuous reinforcements of the free edge of a semiinfinite plate

Author(s):  
M. M. Kundrat ◽  
A. M. Kundrat ◽  
Yu. V. Zablotska

Exfoliation the not extensible flexible stiffener heated up to the set temperature is investigated in conditions of a plane problem thermoelasticity. The flexible stiffener is placed at edge of the semi-infinite plates in conditions ideal thermal contact and action the stretching loading on the plate. Development of localized zones of prefracture (the weakened contact) is precede to separation the stiffener in vicinities of her ends. They can correspond to regions of damages, plastic deformation, partial break of connection and another precedes. On area outside of zones of prefracture the perfect mechanical contact is remaining. The analytical decision of a problem is shown to problem Koshy for differential equation of the first order and realized its numerical analysis. Physically correct limited stresses and deformations are received in all points of a composition. Tangents stresses also satisfy to relationship of pair law. Basic part of loading from reinforcements to plate is transfer in neighbourhood of reinforcement ends. Interference of power and temperature loadings on flexible stiffener separation is investigated.

1982 ◽  
Vol 49 (2) ◽  
pp. 409-416
Author(s):  
N. Sugimoto

The boundary layer solutions previoulsy obtained in Part 2 of this series for the cases of the built-in edge and the free edge are evaluated numerically. For the built-in edge, a characteristic penetration depth of the boundary layer toward the interior region is given by 0.13 εh, εh being the normalized thickness of the plate, while for the free edge, it is given by 0.32 εh. Thus the boundary layer for the free edge penetrates more deeply toward the interior region than that for the built-in edge. The first-order stress distribution in each boundary layer is displayed. For the built-in edge, the stress singularity appears on the edge. It is shown that, in the boundary layer, the shearing and normal stresses become comparable with the bending stresses. Similarly for the free edge, the shearing stress also becomes comparable with the twisting stress. It should be remarked that, in the boundary layer, the shearing or the normal stress plays a primarily important role as the bending or the twisting stress. But the former decays toward the interior region and remains higher order than the latter. Finally owing to these numerical results, the coefficients involved in the “reduced” boundary conditions for the built-in edge are evaluated for the various plausible values of Poisson’s ratio.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


Author(s):  
K. C. Panda ◽  
R. N. Rath ◽  
S. K. Rath

In this paper, we obtain sufficient conditions for oscillation and nonoscillation of the solutions of the neutral delay differential equation yt−∑j=1kpjtyrjt′+qtGygt−utHyht=ft, where pj and rj for each j and q,u,G,H,g,h, and f are all continuous functions and q≥0,u≥0,ht<t,gt<t, and rjt<t for each j. Further, each rjt, gt, and ht⟶∞ as t⟶∞. This paper improves and generalizes some known results.


2000 ◽  
Vol 15 (28) ◽  
pp. 4477-4498 ◽  
Author(s):  
P. M. LLATAS ◽  
A. V. RAMALLO ◽  
J. M. SÁNCHEZ DE SANTOS

We analyze the world volume solitons of a D3-brane probe in the background of parallel (p, q) five-branes. The D3-brane is embedded along the directions transverse to the five-branes of the background. By using the S duality invariance of the D3-brane, we find a first-order differential equation whose solutions saturate an energy bound. The SO(3) invariant solutions of this equation are found analytically. They represent world volume solitons which can be interpreted as formed by parallel (-q, p) strings emanating from the D3-brane world volume. It is shown that these configurations are 1/4 supersymmetric and provide a world volume realization of the Hanany–Witten effect.


1988 ◽  
Vol 03 (04) ◽  
pp. 953-1021 ◽  
Author(s):  
RICCARDO D’AURIA ◽  
PIETRO FRÉ ◽  
MARIO RACITI ◽  
FRANCO RIVA

Using a theorem by Bonora-Pasti and Tonin on the existence of a solution for D=10N=1 Bianchi identities in the presence of a Lorentz Chern Simons term, we find an explicit parametrization of the superspace curvatures. Our solution depends only on one free parameter which can be reabsorbed in a field redefinition of the dilaton and of the gravitello. We emphasize that the essential point which enables us to obtain a closed form for the curvature parametrizations and hence for the supersymmetry transformation rules is the use of first order formalism. The spin connection is known once the torsion is known. This latter, rather than being identified with Hµνρ as it is usually done in the literature, is related to it by a differential equation which reduces to the algebraic relation Hµνρ = - 3Tµνρ e4/3σ only at γ1=0 (γ1 being proportional to κ/g2). The solution of the Bianchi identities exhibited in this paper corresponds to a D=10 anomaly free supergravity (AFS). This theory is unique in first order formalism but corresponds to various theories in second order formalism. Indeed the torsion equation is a differential equation which, in order to be solved must be supplemented with boundary conditions. One wonders whether supplemented with a judicious choice of boundary conditions for the torsion equation, AFS yields all the interaction terms found in the effective theory of the heterotic string (ETHS). In this respect two remarks are in order. Firstly it appears that solving the torsion equation iteratively with Tµνρ = -1/3Hµνρ e-4/3σ as starting point all the terms of ETHS except those with a ζ(3) coefficient show up. (Whether the coefficient agree is still to be checked.) Secondly, as shown in this paper the rheonomic solution of the super Poincaré Bianchi identities is unique. Hence additional interaction terms can be added to the Lagrangian only by modifying the rheonomic parametrization of the [Formula: see text]-curvature. The only assumption made in our paper is that [Formula: see text] has at most ψ∧ψ∧V components (sector (1,2)). Correspondingly the only room left for a modification of the present theory is the addition of a (0, 3) part in the rheonomic parametrization of [Formula: see text]. When this work was already finished a conjecture was published by Lechner Pasti and Tonin that such a generalization of AFS might exist and be responsible for the ζ(3) missing term. Indeed if we were able to solve the [Formula: see text]-Bianchi with this new (0, 3)-part then the torsion equation would be modified via new terms which, in second order formalism, lead to additional gravitational interactions. The equation of motion of Anomaly Free Supergravity can be worked out from the Bianchi identities: we indicate through which steps. The corresponding Lagrangian could be constructed with the standard procedures of the rheonomy approach. In this paper we limit ourselves to the bosonic sector of such a Lagrangian and we show that it can indeed be constructed in such a way as to produce the relation between Hµνρ and Tµνρ as a variational equation.


Sign in / Sign up

Export Citation Format

Share Document