scholarly journals Cloud Point Extraction Of Cationic Surfactants And Their Ionic Associates With Sodium Dodecyl Sulfate

2020 ◽  
Vol 15 (3) ◽  
pp. 111-116
Author(s):  
S.O. Lelyushok ◽  
V.O. Doroschuk ◽  
S. A. Kulichenko

The distribution of individual cationic surfactants and their ionic associates with the anionic surfactant in the cloud point extraction systems, based on non-ionic surfactant OP-7 was investigated. Determined that the dependence of the extraction degree of halides alkylpyridiniums on carboxylic change length in optimal conditions for extraction is characterized by the existence of maximum for cationic surfactant where n = 12. Decrease as well as increase in carboxylic change length of cation of alkylpyridiniums diminishes the effectiveness of their extraction into the surfactant-rich phase. The peculiarities of inter phase distribution of ionic associates cationic surfactant – anionic surfactant in the micellar extraction systems are investigated. It was shown, that with the increase in carboxylic change length of cationic surfactant the dependence of extraction degree of associates with anionic surfactant is characterized by the existence of the maximum. Most effective into the surfactant-rich phase extracted of ionic associates of three- and tetradecylpyridinium. Decreasing and increasing of hydrophobicity of alkylpyridiniums diminishes the effectiveness of extraction of associates. The established effects are explained by the hydrophobic correspondence between the substrate and the surfactant-rich phase of non-ionic surfactant.

2009 ◽  
Vol 37 (12) ◽  
pp. 1717-1721 ◽  
Author(s):  
Yi-Jun YU ◽  
Guan-Yong SU ◽  
Michael HW LAM ◽  
Paul KS LAM ◽  
Hong-Xia YU

2010 ◽  
Vol 8 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Wifky El-Naggar ◽  
Taysseer Lasheen ◽  
El-Said Nouh ◽  
Ahmed Ghonaim

AbstractBrilliant green was used as a complexing agent in cloud point extraction (CPE) and applied for selective preconcentration of trace amounts of gold in geological matrices. The analyte in the initial aqueous solution was acidified with hydrochloric acid (0.1 M) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with methanol and the analyte determined in the surfactant rich phase by flame atomic absorption spectrometry (FAAS). After optimization of the complexation and extraction conditions, a preconcentration factor of 31 was obtained for only 10 mL of sample. The analytical curve was linear in the range of 3–1000 ng mL−1 and the limit of detection was 1.5 ng mL−1. The proposed method was applied to the determination of gold in geological samples.


2020 ◽  
Vol 1 (1) ◽  
pp. 20-27

Cloud Point Extraction (CPE) as an effective method for pre-concentration and separation of cadmium from aqueous solution is widely utilized. This study involves a surfactant mediated CPE procedure in order to remove cadmium from waste water using Polythiophene nanoparticle and Triton X- 100 as a non – ionic surfactant. Polythiophene – coated iron nanoparticles was successfully synthesized with novel method and as a super magnetic nano-particles (MNPs) for cadmium removal from aqueous solution was evaluated. Polythophene nano-particles emulsifying method have been synthesized and fabricated. Fabricated nano-particle was characterized by Fourier-transform infrared spectroscopy (FTIR), and analysed transmission electron microscopy (SEM). Effects of pH, buffer volume, extraction time, temperature, amount of nano-particle were essentially investigated. To reach in optimum conditions, related experiments were replicated and accomplished as well. For removal of cadmium by CPE approach the optimization conditions were gained at pH = 7 , volume of buffer acid 1.5 millilitre , electrolyte concentration (NaCl) of 10 -3 mole L-1 , Trinton concentration 5 %, cloud point temperature 80 0 C , extraction time 40 minutes, and 5 mg of modified polythiophene nano-particle. The calibration graph was liner with a correlation coefficient of 0. 9984 and represents appropriate liner correlation with an amount and concentration. The results revealed that 5 gram of modified nanoparticle can significantly increase the efficiency of cadmium removal.


2013 ◽  
Vol 303-306 ◽  
pp. 323-328
Author(s):  
Hai Ke Feng

In this paper, we present a novel embed fluorescence method that allows one to monitor the change from emulsion polymerization to microemulsion polymerization with low monomer contents. The microemulsion polymerization of methyl methacrylate (MMA) was investigated using N-(2-anthracene) methacrylamide (AnMA) as the probe whose fluorescence emission intensity was proportional to the conversion of MMA into the polymer.In this research, the trace amount of AnMA unit looked like embed in the MMA chain. In a solution containing 3wt% of MMA with respect to water, with the anionic surfactant of sodium dodecyl sulphate (SDS) and water-soluble initiator of potassium persulfate (KPS), the process of changing from emulsion to microemulsion has been monitored. By contrast, with the non-ionic surfactant of polyoxyethylene (20) oleyl ether (Brij98) or water-insoluble initiator of 2,2′-azobis(isobutyronitrile) (AIBN), the process of changing from emulsion to microemulsion also have been monitored.


Author(s):  
Ambreen Shah ◽  
Fayyaz Ahmed Keerio ◽  
Saima Qayyum Memon ◽  
Ghulam Zuhra Memon

A new method of cloud point extraction was determined for preconcentration and determination of different metal ions like copper(II), nickel(II) and cobalt(II) ions. The complexation has been done by bis(2-acetyl pyridine 4-phenyl 3-thiosemicarbazone) (APPT) using sodium dodecyl sulphate (SDS) as surfactant. Metal ions are extracted into the phase rich in SDS after centrifugation. Initially, micellar phase was dissolved in 10 mL of deionized water then acidified with 0.5 mol/L HNO3, enhanced the surfactant- rich phase and analyzed by flame atomic absorption spectrometry (FAAS). The effects of pH, the concen- trations of metal ions and chelating agent (APPT), volume of surfactant (SDS), equilibration temperature and time were studied on CPE. The preconcentration factor obtained was 25 and the limits of detection(DL) obtained for cobalt(II), nickel(II) and copper(II) were 1.5, 1.7 and 2.4 ng/mL, respectively. This method of preconcentration was effectively useful for the determination of cobalt(II), nickel(II) and copper(II) in water samples.


Sign in / Sign up

Export Citation Format

Share Document