An Experimental Study on the Performance Improvement of Cooling Dehumidifier by Heat Pipe Application

Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


1975 ◽  
Vol 28 (1) ◽  
pp. 19-21 ◽  
Author(s):  
L. L. Vasil'ev ◽  
V. G. Kiselev ◽  
M. A. Litvinets ◽  
A. V. Savchenko

2015 ◽  
Vol 96 ◽  
pp. 23-34 ◽  
Author(s):  
V. Ayel ◽  
L. Araneo ◽  
A. Scalambra ◽  
M. Mameli ◽  
C. Romestant ◽  
...  

2014 ◽  
Vol 592-594 ◽  
pp. 1423-1427 ◽  
Author(s):  
G. Kumaresan ◽  
S. Venkatachalapathy ◽  
Indraneel C. Naik

This study aims to investigate the influence of inclination angle and concentration of nanoparticles on the improvement in heat pipe thermal efficiency. Spherical shaped, 40 nm size CuO nanoparticles are used in this study and its physical and thermal chracteristics are investigated. The results are compared with a heat pipe using DI water at horizontal position.The thermal efficiency is improved by increasing the tilt angle and mass of particles dispersed in DI water. The improvement in thermal efficiency obtained are 20.59, 35.92 and 32.57% respectively for 0.5, 1.0 and 1.5 wt% of CuO nanofluids and 60° inclination angle.


2017 ◽  
Vol 117 ◽  
pp. 782-798 ◽  
Author(s):  
Xianbing Ji ◽  
Ye Wang ◽  
Jinliang Xu ◽  
Yanping Huang

Cryogenics ◽  
2019 ◽  
Vol 97 ◽  
pp. 63-69 ◽  
Author(s):  
Xiao Sun ◽  
Sizhuo Li ◽  
Bo Jiao ◽  
Zhihua Gan ◽  
John Pfotenhauer

Sign in / Sign up

Export Citation Format

Share Document