The Performance of the hairpin type U Shape Double pipe heat exchanger type under effect of using Passive and Active Techniques.

2021 ◽  
pp. 3024-3037
Author(s):  
Muhamad F. ALbayati , Rafeq A. Khalefa,

The process of improving and developing heat exchanger performance has received a lot of attention, and efforts are still being made by specialized researchers and engineers with a huge investigations to increase rate of heat transfer to lessen the volume size and price cost of the factories apparatus accordingly. In this experimental study, a suitable heat exchanger equipped with flow meters and thermocouples for measuring flow rates and temperatures was used with the U shape hairpin type exchanger. The bending and angle of curvature of the tubes causes vortex flow, which greatly aids to attractive the rate of heat transfer process and increase the performance, The effect of active and passive techniques with different positions of the U shape Exchanger like position (U shape and Inverse U shape ) as parallel coupling with tube liquid in series is investigated during this study. passive technique represented using the O ring fin type. and an active technique represented by the injection of an air bubble by a small compressor through a special air diffuser. The results show that the best application was with inverse U shape (∩) and the performance enhanced about (19.1%) in the case of active techniques while and (11.1%) with passive techniques and by applying both techniques together, the overall enhancement was (30.272%), So this study provides new visions for further studies.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


2017 ◽  
Vol 6 (4) ◽  
pp. 83 ◽  
Author(s):  
Gaurav Thakur ◽  
Gurpreet Singh

The thermal performance of shell and tube heat exchangers has been enhanced with the use of different techniques. Air bubble injection is one such promising and inexpensive technique that enhances the heat transfer characteristics inside shell and tube heat exchanger by creating turbulence in the flowing fluid. In this paper, experimental study on heat transfer characteristics of shell and tube heat exchanger was done with the injection of air bubbles at the tube inlet and throughout the tube with water based Al2O3 nanofluids i.e. (0.1%v/v and 0.2%v/v). The outcomes obtained for both the concentrations at two distinct injection points were compared with the case when air bubbles were not injected. The outcomes revealed that the heat transfer characteristics enhanced with nanoparticles volumetric concentration and the air bubble injection. The case where air bubbles were injected throughout the tube gave maximum enhancement followed by the cases of injection of air bubbles at the tube inlet and no air bubble injection. Besides this, water based Al2O3 nanofluid with 0.2%v/v of Al2O3 nanoparticles gave more enhancement than Al2O3nanofluid with 0.1%v/v of Al2O3 nanoparticles as the enhancement in the heat transfer characteristics is directly proportional to the volumetric concentration of nanoparticles in the base fluid. The heat transfer rate showed an enhancement of about 25-40% and dimensionless exergy loss showed an enhancement of about 33-43% when air bubbles were injected throughout the tube. Moreover, increment in the heat transfer characteristics was also found due to increase in the temperature of the hot fluid keeping the flow rate of both the heat transfer fluids constant.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Muhammad Ishaq ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal ◽  
Ahmad Hassan

A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of heat exchanger.


2018 ◽  
Vol 57 (4) ◽  
pp. 3709-3725 ◽  
Author(s):  
Marwa A.M. Ali ◽  
Wael M. El-Maghlany ◽  
Yehia A. Eldrainy ◽  
Abdelhamid Attia

2019 ◽  
Vol 140 ◽  
pp. 580-591 ◽  
Author(s):  
Ganesh Kumar Poongavanam ◽  
Balaji Kumar ◽  
Sakthivadivel Duraisamy ◽  
Karthik Panchabikesan ◽  
Velraj Ramalingam

Sign in / Sign up

Export Citation Format

Share Document