scholarly journals Enhancement of Transient Stability in a Grid-Connected Wind Power Plant Utilizing PI-FL Controller

Author(s):  
Dr. KamalaMoorthy N, Et. al.

This paper proposed a blend of corresponding PIC and FLC for controlling the pitch angle of wind turbine connected to grid. Initially, conventional control methodology is employed to design the PI controller and later on, the concept of fuzzy logic methodology is adapted to analyze the gains of proportional integral controller. Due to versatility of fuzzy logic controller and rugged structure, sturdy nature of proportional integral controller are clubbed together, it provides a virtuous stagnant and dynamic outcomes. The proposed novel technique can be assessed by considering various disturbances such as short circuit network fault. The reenactment after effects of proposed controller is contrasted with proportional integral controller and FLC. From the findings it is shown that the proposed methodology could improve stability even the wind farm is subjected to different operating conditions. Moreover, a performance index in terms of absolute maximum deviations is defined in order to evaluate the adequacy of the proposed controller.

2016 ◽  
Vol 40 (6) ◽  
pp. 528-539 ◽  
Author(s):  
Mouna Ben Smida ◽  
Anis Sakly

Pitch angle control is considered as a practical technique for power regulation above the rated wind speed. As conventional pitch control commonly the proportional–integral controller is used. However, the proportional–integral type may well not have suitable performance if the controlled system contains nonlinearities as the wind turbine system or the desired wind trajectory varied with higher frequency. In the presence of modeling uncertainties, the necessity of methods presenting controllers with appropriate performance as the advanced control strategies is inevitable. The pitch angle based on fuzzy logic is proposed in this work. We are interested to the development of a wind energy conversion system based on permanent magnet synchronous generator. The fuzzy logic controller is effective to compensate the nonlinear characteristics of the pitch angle to the wind speed. The design of the proposed strategy and its comparison with a conventional proportional–integral controller are carried out. The proposed method effectiveness is verified using MATLAB simulation results.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989019 ◽  
Author(s):  
Huangshui Hu ◽  
Tingting Wang ◽  
Siyuan Zhao ◽  
Chuhang Wang

In this article, a genetic algorithm–based proportional integral differential–type fuzzy logic controller for speed control of brushless direct current motors is presented to improve the performance of a conventional proportional integral differential controller and a fuzzy proportional integral differential controller, which consists of a genetic algorithm–based fuzzy gain tuner and a conventional proportional integral differential controller. The tuner is used to adjust the gain parameters of the conventional proportional integral differential controller by a new fuzzy logic controller. Different from the conventional fuzzy logic controller based on expert experience, the proposed fuzzy logic controller adaptively tunes the membership functions and control rules by using an improved genetic algorithm. Moreover, the genetic algorithm utilizes a novel reproduction operator combined with the fitness value and the Euclidean distance of individuals to optimize the shape of the membership functions and the contents of the rule base. The performance of the genetic algorithm–based proportional integral differential–type fuzzy logic controller is evaluated through extensive simulations under different operating conditions such as varying set speed, constant load, and varying load conditions in terms of overshoot, undershoot, settling time, recovery time, and steady-state error. The results show that the genetic algorithm–based proportional integral differential–type fuzzy logic controller has superior performance than the conventional proportional integral differential controller, gain tuned proportional integral differential controller, conventional fuzzy proportional integral differential controller, and scaling factor tuned fuzzy proportional integral differential controller.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 1137-1144 ◽  
Author(s):  
Ali Uysal ◽  
Serdar Gokay ◽  
Emel Soylu ◽  
Tuncay Soylu ◽  
Serkan Çaşka

In this study, the auto-tuning proportional-integral controller is used to control the speed of a switched reluctance motor. The control algorithm is executed by the programmable logic controller. The proportional integral gains are determined via fuzzy logic. Fuzzy logic is executed on a separate computer via MATLAB/Simulink software. The data exchange between the programmable logic controller and MATLAB/Simulink is done with object linking embedding/component for the process. The fuzzy proportional integral control algorithm is compared with the conventional proportional integral controller. We reduced the load on the programmable logic controller via executing fuzzy logic in a separate computer and at the same time eliminated the disadvantages of the conventional proportional-integral controller. With the proposed method, the engine reached the reference speed value in a short time and the overshoots were eliminated in variable conditions such as different load and different speed conditions.


2018 ◽  
Vol 29 (4) ◽  
pp. 473-491 ◽  
Author(s):  
Santosh Singh Raghuwanshi ◽  
Vikas Khare

The aim of this study is to calculate the size of the stand-alone solar photovoltaic generator and water pumping system for irrigation. In addition solar photovoltaic generator connects voltage source inverter to vector controlled induction motor-pump system. Perturb and observe method is used for harvesting maximum power of photovoltaic generator. The smooth-starting of motor-pump drive is achieved through the maximum power point tracking method. The operational performance of the solar-water-pump system is kept at 60 m head and supply daily average 35,000 L/day. In this paper result is validated by the comparison fuzzy logic controller and proportional-integral controller, driven by solar-motor-pump system. The results confirmed that fuzzy logic controller based pumping system gives more accurate results as compared to proportional-integral controller based motor-pump system. The fuzzy logic controller increases the accuracy and efficiency of the solar-water-pump system.


Author(s):  
Viyils Sangregorio-Soto ◽  
Claudia L. Garzon-Castro ◽  
Gianfranco Mazzanti ◽  
Manuel Figueredo ◽  
John A. Cortes-Romero

Sign in / Sign up

Export Citation Format

Share Document