scholarly journals An Improved under Sampling Approaches for Concept Drift and Class Imbalance Data Streams using Improved Cuckoo Search Algorithm

Author(s):  
Tirupathi Rao Gullipalli

One of the biggest challenges in the recent times in the field of data stream learning is to mitigate the presence of concept drift. There are numerous challenges in overcoming the concept drift, such as changing class ratio, huge volume of data and real time processing for effective knowledge discovery. Evolutionary search techniques are one of the new paradigms to handle huge dimensionality and scalability of the data streams. One of the finest and least applied evolutionary search approaches is the cuckoo search technique for data streams. To solve both the concept drift and class imbalance issues simultaneously, in this paper we have proposed an approach using nature inspired evolutionary optimizing technique known as Cuckoo Feature and Instance Selection (CFIS) algorithm. The performance evaluation of the proposed approach is done on an exclusive experimental setup of 15 data streams formed and compared with two data stream approach. Moreover, a set of six evaluation criteria’s are considered for showing overall better performance of the proposed approach in the presence of concept drift and class imbalance.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yange Sun ◽  
Meng Li ◽  
Lei Li ◽  
Han Shao ◽  
Yi Sun

Class imbalance and concept drift are two primary principles that exist concurrently in data stream classification. Although the two issues have drawn enough attention separately, the joint treatment largely remains unexplored. Moreover, the class imbalance issue is further complicated if data streams with concept drift. A novel Cost-Sensitive based Data Stream (CSDS) classification is introduced to overcome the two issues simultaneously. The CSDS considers cost information during the procedures of data preprocessing and classification. During the data preprocessing, a cost-sensitive learning strategy is introduced into the ReliefF algorithm for alleviating the class imbalance at the data level. In the classification process, a cost-sensitive weighting schema is devised to enhance the overall performance of the ensemble. Besides, a change detection mechanism is embedded in our algorithm, which guarantees that an ensemble can capture and react to drift promptly. Experimental results validate that our method can obtain better classification results under different imbalanced concept drifting data stream scenarios.


2021 ◽  
Author(s):  
Priya S ◽  
Annie Uthra

Abstract As the data mining applications are increasing popularly, large volumes of data streams are generated over the period of time. The main problem in data streams is that it exhibits a high degree of class imbalance and distribution of data changes over time. In this paper, Timely Drift Detection and Minority Resampling Technique (TDDMRT) based on K-nearest neighbor and Jaccard similarity is proposed to handle the class imbalance by finding the current ratio of class labels. The Enhanced Early Drift Detection Method (EEDDM) is proposed for detecting the concept drift and the Minority Resampling Method (KNN-JS) determines whether the current data stream should be regarded as imbalance and it resamples the minority instances in the drifting data stream. The K-Nearest Neighbors technique is used to resample the minority classes and the Jaccard similarity measure is established over the resampled data to generate the synthetic data similar to the original data and it is handled by ensemble classifiers. The proposed ensemble based classification model outperforms the existing over sampling and under sampling techniques with accuracy of 98.52%.


Author(s):  
D. Himaja ◽  
T. Maruthi Padmaja ◽  
P. Radha Krishna

Learning from data streams with both online class imbalance and concept drift (OCI-CD) is receiving much attention in today's world. Due to this problem, the performance is affected for the current models that learn from both stationary as well as non-stationary environments. In the case of non-stationary environments, due to the imbalance, it is hard to spot the concept drift using conventional drift detection methods that aim at tracking the change detection based on the learner's performance. There is limited work on the combined problem from imbalanced evolving streams both from stationary and non-stationary environments. Here the data may be evolved with complete labels or with only limited labels. This chapter's main emphasis is to provide different methods for the purpose of resolving the issue of class imbalance in emerging streams, which involves changing and unchanging environments with supervised and availability of limited labels.


Data Streams are having huge volume and it can-not be stored permanently in the memory for processing. In this paper we would be mainly focusing on issues in data stream, the major factors which are affecting the accuracy of classifier like imbalance class and Concept Drift. The drift in Data Stream mining refers to the change in data. Such as Class imbalance problem notifies that the samples are in the classes are not equal. In our research work we are trying to identify the change (Drift) in data, we are trying to detect Imbalance class and noise from changed data. And According to the type of drift we are applying the algorithms and trying to make the stream more balance and noise free to improve classifier’s accuracy.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document