scholarly journals Dynamic Impact Response of Ultrafine Grained AA5052 Aluminum Alloy Processed Via Multiaxial Forging at Cryogenic Temperature

Author(s):  
O. J. Ajao Et. al.

In this study, high strain rate mechanical test was conducted on ultrafine-grained AA5052 aluminum alloy using the Split-Hopkinson Pressure Bar experiment. The AA5052 aluminum alloy was processed via multiaxial forging under cryogenic condition at two different cycles  to achieve grain refinement and ultimately, increase in strength of the material. The average strain rates that the specimens were subjected to during the Split-Hopkinson Pressure Bar experiment ranges from 1000 s-1 to 5000 s-1 at an increment of 1000 s-1. The EBSD map shows that the average grain size of the AA5052 aluminum alloys for the samples processed at 4-cycles is approximately ~900 nm while the samples processed at 6-cycles have a lower average grain size of approximately ~700 nm due to being subjected to more plastic deformation during the processing. The high strain rate deformation process of both specimens was dominated by thermal softening with minima strain hardening effect. During the deformation, the maximum flow stress experienced by samples that was processed at 4-cycles is 410 MPa at 5000 s-1 strain rate while samples processed at 6-cycles has 494 MPa at 3000 s-1. Strain hardenability is not dominant in the deformation mechanism but relative to AA5052 CF (4-cycles), AA5052 CF (6-cycles) has a better strain hardening exponent as the strain rate increases. Both specimens have the highest strain hardening exponent at 1000 s-1 which is 0.1544 and 0.134 for AA5052 CF (4-cycles) and AA5052 CF (6-cycles), respectively. Our results show that AA5052 CF (6-cycles) possesses better mechanical properties under high strain rate in comparison with AA5052 CF (6-cycles).

2019 ◽  
Vol 10 (1) ◽  
pp. 99-120
Author(s):  
Jarosław MARCISZ ◽  
Bogdan GARBARZ ◽  
Jacek JANISZEWSKI

The paper contains results of investigation of nanostructured bainitic steel subjected to repeated high-strain-rate deformations using split Hopkinson pressure bar method and uniaxial compression of cylindrical specimens in Gleeble simulator. Steel of chemical composition Fe-0.58%C-1.80%Si-1.95%Mn-1.3Cr-0.7Mo (weight %), after isothermal heat treatment at 210°C, is characterized by following mechanical properties determined at static tensile test: yield strength YS0.2 = 1.3 GPa; ultimate tensile strength UTS = 2.05 GPa; total elongation E = 12%, hardness 610 HV and Charpy-V impact toughness 24 J at +20℃ and 14 J at -40℃. Stress-strain curves obtained for pre-stressed material before the next dynamic compression and after repeated compressions were analysed. Microstructure of the deformed specimens in areas of the dynamic impact was investigated. The effects of the dynamic repeated impact on changes in characteristics of the investigated material, in that on strain hardening mechanism, were established. Critical strains of 5.3% at strain rate 910 s-1 and about 10% at strain rate 50 s-1 for the nanostructured bainite were determined. Exceeding the critical strain under uniaxial repeated high-strain-rate compression, resulted in decreasing of ability of the steel for further plastic deformation and strain hardening.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


2018 ◽  
Vol 183 ◽  
pp. 02011
Author(s):  
Kenji Nakai ◽  
Tsubasa Fukushima ◽  
Takashi Yokoyama ◽  
Kazuo Arakawa

The high strain-rate compressive characteristics of a cross-ply carbon/epoxy laminated composite in the three principal material directions or fibre (1-), in-plane transverse (2-) and throughthickness (3-) directions are investigated on the conventional split Hopkinson pressure bar (SHPB) over a range of temperatures between 20 and 80 °C. A nearly 10 mm thick cross-ply carbon/epoxy composite laminate fabricated using vacuum assisted resin transfer molding (VaRTM) was tested. Cylindrical specimens with a slenderness ratio (= length/diameter) of 0.5 are used in high strain-rate tests, and those with the slenderness ratios of 1.0 and 1.5 are used in low and intermediate strain-rate tests. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine at elevated temperatures. A pair of steel rings is attached to both ends of the cylindrical specimens to prevent premature end crushing in the 1-and 2-direction tests on the Instron testing machine. It is shown that the ultimate compressive strength (or failure stress) exhibits positive strainrate effects and negative temperature ones over a strain-rate range of 10–3 to 103/s and a temperature range of 20 to 80 °C in the three principal material directions.


2017 ◽  
Vol 36 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Sunita Mishra ◽  
Hemant Meena ◽  
Vedant Parashar ◽  
Anuradha Khetwal ◽  
Tanusree Chakraborty ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02012
Author(s):  
Miloslav Popovič ◽  
Jaroslav Buchar ◽  
Martina Drdlová

The results of dynamic compression and tensile-splitting tests of concrete reinforced by randomly distributed short non – metallic fibres are presented. A Split Hopkinson Pressure Bar combined with a high-speed photographic system, was used to conduct dynamic Brazilian tests. Quasi static test show that the reinforcement of concrete by the non-metallic fibres leads to the improvement of mechanical properties at quasi static loading. This phenomenon was not observed at the high strain rate loading .Some explanation of this result is briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document