scholarly journals Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding

2019 ◽  
Vol 4 ◽  
Author(s):  
Benedikt Kleinmeier ◽  
Benedikt Zönnchen ◽  
Marion Gödel ◽  
Gerta Köster

Pedestrian dynamics is an interdisciplinary field of research. Psychologists, sociologists, traffic engineers, physicists, mathematicians and computer scientists all strive to understand the dynamics of a moving crowd. In principle, computer simulations offer means to further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of approaches, with very different characteristics, compete. Often only the experts in one special model type are able to assess the consequences these characteristics have on a simulation study. Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics need a tool to compare competing approaches. Developers, too, would profit from an easy way to get insight into an alternative modeling ansatz. Vadere meets this interdisciplinary demand by offering an open-source simulation framework that is lightweight in its approach and in its user interface while offering pre-implemented versions of the most widely spread models.


2020 ◽  
Author(s):  
Johannes Novotny

<p>Geoscience is a highly interdisciplinary field of study, drawing upon conclusions from physics, chemistry and many other academic disciplines. Over the course of the last decades, computer science has become an integral component of geoscientific research. This coincides with the rising popularity of the open-source movement, which helped to develop better tools for collaboration on complex software projects across physical distances and academic boundaries.</p><p>However, while the technical frameworks supporting interdisciplinary work between geoscience and computer science exist, there are still several hurdles one must take in order to achieve successful collaborations. This work summarizes the lessons learned from the development of BasinVis from the perspective of a computer science collaborator. BasinVis is a modular open-source application that aims to allow geoscientists to analyze and visualize sedimentary basins in a comprehensive workflow. A particular development goal was to introduce the advances of 2D and 3D visualization techniques to the quantitative analysis of the stratigraphic setting and subsidence of sedimentary basins based on well data and/or stratigraphic profiles.</p><p>Development of BasinVis started in 2013 with its first release as a MATLAB GUI application in 2016. Apart from functionality, one of the major problems to solve in this period was the alignment of research goals and methodology, which may diverge greatly between geoscience and computer science. Examples of this would be to clarify the scientific terminologies of each fields early on and to clearly establish the expected results of the application in terms of mathematical accuracy and uncertainty (a concept that may catch computer scientists off guard).</p>



Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2485
Author(s):  
Shakir Ullah ◽  
Saeed Ur Rehman ◽  
Peter Han Joo Chong

Light Fidelity (LiFi) is a new candidate for wireless networking that utilizes the visible light spectrum and exploits the existing lighting infrastructure in the form of light-emitting diodes (LEDs). It provides point-to-point and point-to-multipoint communication on a bidirectional channel at very high data rates. However, the LiFi has small coverage, and its optical gain is closely related to the receiver’s directionality vis-à-vis the transmitter, therefore it can experience frequent service outages. To provide reliable coverage, the LiFi is integrated with other networking technologies such as wireless fidelity (WiFi) thus forming a hybrid system. The hybrid LiFi/WiFi system faces many challenges including but not limited to seamless integration with the WiFi, support for mobility, handover management, resource sharing, and load balancing. The existing literature has addressed one or the other aspect of the issues facing LiFi systems. There are limited free source tools available to holistically address these challenges in a scalable manner. To this end, we have developed an open-source simulation framework based on the network simulator 3 (ns-3), which realizes critical aspects of the LiFi wireless network. Our developed ns-3 LiFi framework provides a fully functional AP equipped with the physical layer and medium access control (MAC), a mobility model for the user device, and integration between LiFi and WiFi with a handover facility. Simulation results are produced to demonstrate the mobility and handover capabilities, and the performance gains from the LiFi-WiFi hybrid system in terms of packet delay, throughput, packet drop ratio (PDR), and fairness between users. The source code of the framework is made available for the use of the research community.



Author(s):  
Robin Lovelace

AbstractGeographic analysis has long supported transport plans that are appropriate to local contexts. Many incumbent ‘tools of the trade’ are proprietary and were developed to support growth in motor traffic, limiting their utility for transport planners who have been tasked with twenty-first century objectives such as enabling citizen participation, reducing pollution, and increasing levels of physical activity by getting more people walking and cycling. Geographic techniques—such as route analysis, network editing, localised impact assessment and interactive map visualisation—have great potential to support modern transport planning priorities. The aim of this paper is to explore emerging open source tools for geographic analysis in transport planning, with reference to the literature and a review of open source tools that are already being used. A key finding is that a growing number of options exist, challenging the current landscape of proprietary tools. These can be classified as command-line interface, graphical user interface or web-based user interface tools and by the framework in which they were implemented, with numerous tools released as R, Python and JavaScript packages, and QGIS plugins. The review found a diverse and rapidly evolving ‘ecosystem’ tools, with 25 tools that were designed for geographic analysis to support transport planning outlined in terms of their popularity and functionality based on online documentation. They ranged in size from single-purpose tools such as the QGIS plugin AwaP to sophisticated stand-alone multi-modal traffic simulation software such as MATSim, SUMO and Veins. Building on their ability to re-use the most effective components from other open source projects, developers of open source transport planning tools can avoid ‘reinventing the wheel’ and focus on innovation, the ‘gamified’ A/B Street https://github.com/dabreegster/abstreet/#abstreet simulation software, based on OpenStreetMap, a case in point. The paper, the source code of which can be found at https://github.com/robinlovelace/open-gat, concludes that, although many of the tools reviewed are still evolving and further research is needed to understand their relative strengths and barriers to uptake, open source tools for geographic analysis in transport planning already hold great potential to help generate the strategic visions of change and evidence that is needed by transport planners in the twenty-first century.



2011 ◽  
Vol 60 (2) ◽  
pp. 819-824 ◽  
Author(s):  
Oliviero Barana ◽  
Cédric Boulbe ◽  
Sylvain Brémond ◽  
Simone Mannori ◽  
Philippe Moreau ◽  
...  


2021 ◽  
Vol 12 (2) ◽  
pp. 52-65
Author(s):  
Eviatar Rosenberg ◽  
Dima Alberg

A significant part of pension savings is in the capital market and exposed to market volatility. The COVID-19 pandemic crisis, like the previous crises, damaged the gains achieved in those funds. This paper presents a development of open-source finance system for stocks backtesting trade strategies. The development will be operated by the Python programming language and will implement application user interface. The system will import historical data of stocks from financial web and will produce charts for analysis of the trends in stocks price. Based on technical analysis, it will run trading strategies which will be defined by the user. The system will output the trade orders that should have been executed in retrospect and concluding charts to present the profit and loss that would occur to evaluate the performance of the strategy.



2021 ◽  
Author(s):  
Vasilis Daoulas ◽  
Nikolaos Tampouratzis ◽  
Panagiotis Mousouliotis ◽  
Ioannis Papaefstathiou


2017 ◽  
Vol 2 (3) ◽  
pp. 139-143 ◽  
Author(s):  
Hannes G. Kenngott ◽  
Martin Apitz ◽  
Martin Wagner ◽  
Anas A. Preukschas ◽  
Stefanie Speidel ◽  
...  

AbstractIn the last hundred years surgery has experienced a dramatic increase of scientific knowledge and innovation. The need to consider best available evidence and to apply technical innovations, such as minimally invasive approaches, challenges the surgeon both intellectually and manually. In order to overcome this challenge, computer scientists and surgeons within the interdisciplinary field of “cognitive surgery” explore and innovate new ways of data processing and management. This article gives a general overview of the topic and outlines selected pre-, intra- and postoperative applications. It explores the possibilities of new intelligent devices and software across the entire treatment process of patients ending in the consideration of an “Intelligent Hospital” or “Hospital 4.0”, in which the borders between IT infrastructures, medical devices, medical personnel and patients are bridged by technology. Thereby, the “Hospital 4.0” is an intelligent system, which gives the right information, at the right time, at the right place to the individual stakeholder and thereby helps to decrease complications and improve clinical processes as well as patient outcome.



2021 ◽  
Vol 17 (4) ◽  
pp. e1008887
Author(s):  
Alex Baranski ◽  
Idan Milo ◽  
Shirley Greenbaum ◽  
John-Paul Oliveria ◽  
Dunja Mrdjen ◽  
...  

Mass Based Imaging (MBI) technologies such as Multiplexed Ion Beam Imaging by time of flight (MIBI-TOF) and Imaging Mass Cytometry (IMC) allow for the simultaneous measurement of the expression levels of 40 or more proteins in biological tissue, providing insight into cellular phenotypes and organization in situ. Imaging artifacts, resulting from the sample, assay or instrumentation complicate downstream analyses and require correction by domain experts. Here, we present MBI Analysis User Interface (MAUI), a series of graphical user interfaces that facilitate this data pre-processing, including the removal of channel crosstalk, noise and antibody aggregates. Our software streamlines these steps and accelerates processing by enabling real-time and interactive parameter tuning across multiple images.



PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 747-748
Author(s):  
Simon Mayr ◽  
Gernot Grabmair


Sign in / Sign up

Export Citation Format

Share Document