scholarly journals Tissue therapy for severe trachoma

2021 ◽  
Vol 43 (1) ◽  
pp. 47-48
Author(s):  
A. N. Kruglov ◽  
M. S. Zarbeeva
Keyword(s):  

A number of antibiotics (synthomycin, chloramphenicol, biomycin, terramycin and tetracycline), as well as sulfanilamide drugs (albucid, etazole, norsulfazole, etc.) are very effective in the treatment of trachoma both in fresh cases and in later cases, when there are no severe corneal lesions

The strategy of heart tissue engineering is simple enough: first remove all the cells from a organ then take the protein scaffold left behind and repopulate it with stem cells immunologically matched to the patient in need. While various suc- cessful methods for decellularization have been developed, and the feasibility of using decellularized whole hearts and extracellular matrix to support cells has been demonstrated, the reality of creating whole hearts for transplantation and of clinical application of decellularized extracellular matrix-based scaffolds will require much more research. For example, further investigations into how lineage-restricted progenitors repopulate the decellularized heart and differentiate in a site-specific manner into different populations of the native heart would be essential. The scaffold heart does not have to be human. Pig hearts carries all the essential components of the extracellular matrix. Through trial and error, scaling up the concentration, timing and pressure of the detergents, researchers have refined the decellularization process on hundreds of hearts and other organs, but this is only the first step. Further, the framework must be populated with human cells. Most researchers in the field use a mixture of two or more cell types, such as endothelial precursor cells to line blood vessels and muscle progenitors to seed the walls of the chambers. The final challenge is one of the hardest: vasculariza- tion, placing a engineered heart into a living animal, integration with the recipient tissue, and keeping it beating for a long time. Much remains to be done before a bioartificial heart is available for transplantation in humans.


The Lancet ◽  
1960 ◽  
Vol 276 (7146) ◽  
pp. 373
Author(s):  
D.K. Ray
Keyword(s):  

Cytotherapy ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 289-298 ◽  
Author(s):  
S.R. Burger

Author(s):  
Jordan H. Wosnick ◽  
M. Douglas Baumann ◽  
Molly S. Shoichet

Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 21 ◽  
Author(s):  
Stephanie Clarke ◽  
Prue E. Munro ◽  
Annemarie L. Lee

Chronic obstructive pulmonary disease (COPD) is a respiratory condition associated with altered chest wall mechanics and musculoskeletal changes. In this narrative review, we describe the underlying musculoskeletal abnormalities in COPD, the reasons for applying manual therapy techniques, their method of application and clinical effects. A variety of manual therapy techniques have been applied in individuals with COPD, including soft tissue therapy, spinal and joint manipulation and mobilisation, and diaphragmatic release techniques. These have been prescribed in isolation and in conjunction with other treatments, including exercise therapy. When applied in isolation, transient benefits in respiratory rate, heart rate and symptoms have been reported. Combined with exercise therapy, including within pulmonary rehabilitation, benefits and their corresponding clinical relevance have been mixed, the extent to which may be dependent on the type of technique applied. The current practical considerations of applying these techniques, including intense therapist–patient contact and the unclear effects in the long term, may limit the broad use of manual therapy in the COPD population. Further high quality research, with adequate sample sizes, that identifies the characteristic features of those with COPD who will most benefit, the optimal choice of treatment approach and the longevity of effects of manual therapy is required.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5858
Author(s):  
Ana Carolina Batista Brochado ◽  
Victor Hugo de Souza ◽  
Joice Correa ◽  
Suzana Azevedo dos Anjos ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
...  

Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell–surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.


Author(s):  
Katarzyna Domaszewska ◽  
Tomasz Pieńkowski ◽  
Arkadiusz Janiak ◽  
Dorota Bukowska ◽  
Maria Laurentowska

The aim of the following paper was to determine the influence of soft tissue therapy on respiratory efficiency and chest mobility of women suffering from breast cancer. This study was a controlled, randomized trial. Tests were carried out in a group of patients (n = 49) who were hospitalized in the Province Polyclinic Hospital, Konin, Poland. In the study group, irrespective of the standard physical therapy program, an additional therapy program was run. The program consisted of applying specific techniques of soft tissue treatment. All patients in each term were subject to pulmonary function tests, chest mobility, and pain assessment. Statistical analysis of the obtained results of spirometry and chest mobility assessment has revealed no differences in the analyzed parameters between the examined groups in the period of joint therapeutic treatment. In the period between the third examination and the end of the 11-month-rehabilitation treatment, statistically significant differences were observed in the analyzed spirometry parameters; however, there was no difference in the parameters describing airflow in small airways (maximal expiratory flow at 50% (MEF50), peak expiratory flow (PEF) between individual groups during consecutive examinations in the course of diversified therapeutic treatment. Chest mobility assessment of the patients, performed during diversified therapeutic treatment, revealed statistically significant differences between the groups. However, there was no difference between the examined groups as far as pain sensation is concerned. Enhancing the regular rehabilitation program by including additional therapeutic methods, which are based on myofascial release and post-isometric relaxation techniques, had beneficial effects regarding respiratory system efficiency.


Sign in / Sign up

Export Citation Format

Share Document