scholarly journals Protein oxidative modification and cathepsin H activity in rats’ thymocytes at nitrogen oxide (II) synthesis modulation in vitro

2014 ◽  
Vol 95 (4) ◽  
pp. 553-557 ◽  
Author(s):  
Yu V Abalenikhina ◽  
M A Fomina

Aim. To study the influence of substrate for nitrogen oxide (II) synthesis - L-arginine - and non-selective NO-synthase inhibitor - N-nitro-L-arginine-methyl ester - on protein oxidative modification in combination with rats’ thymocytes cathepsin H activity estimation in vitro. Methods. The study was performed on male Wistar rats with body weight of 280-320 g. Freshly-separated thymocytes were incubated in vitro in the full nutrient medium containing 5 мМ of N-nitro-L-arginine-methyl ester (n=8) or 5 мМ of L-arginine for 24 hours at the temperature of 37 °C (n=8). Control group consisted of thymocytes incubated in the same conditions in the full nutrient medium (n=8) for 24 hours. Nitric oxide metabolites levels were measured by spectrophotometry in the visible spectrum using the reaction with Griess reagent. Cathepsin H activity was estimated by BarrettKirschke spectrofluorimetry. Protein oxidative modification was measured by R.L. Levine method in E.E. Dubinina modification followed by carbonyl derivatives absorption spectrum quantitative analysis. Results. In nitrogen oxide (II) synthesis deficiency model, protein oxidative modification degree increased, mainly due to basic and neutral aldehyde- and ketone-dinitrophenylhydrazones level increase. Those changes were accompanied by increased activity of cathepsin H. In nitrogen oxide (II) synthesis stimulation model, level of oxidative-modified proteins decreased, mainly due to lower levels of neutral amino acid derivatives, cathepsin H activity didn’t change. Conclusion. In vitro nonselective inhibitor of inducible NO-synthase - N-nitro-L-arginine-methyl ester - stimulates protein oxidative modification and increases activity of cathepsin Н; substrate of NO synthesis - L-arginine - showes antioxidant effect.

2017 ◽  
Vol 98 (6) ◽  
pp. 1005-1011
Author(s):  
M A Fomina ◽  
A M Kudlaeva ◽  
S A Isakov ◽  
A N Ryabkov

Aim. To investigate in vitro effects of 5 mM L-Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside on oxidative modification of lysosomal proteins of liver of intact sexually mature female rats of Wistar line. Methods. In the control groups in vitro incubation of isolated lysosomes in the isolation medium for 1, 2 and 4 hours was carried out. Experimental groups were incubated similarly in solutions of 5 mM L-Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside. Protein oxidative modification was measured in sedimentary fraction according to R.L. Levine’s method in E.E. Dubinina’s modification. Reserve-adaptive capacity was calculated as the difference between total area under the curve of carbonyl derived proteins after metal-catalyzed oxidation (taken as 100%) and spontaneous oxidation, expressed as a percentage. Results. After 4-hour in vitro incubation 5 mM L-Nω-nitroarginine methyl ester was found to statically significantly increase the total level of protein oxidative modification compared to the control group by 2.41 times and to reduce reserve-adaptive capacity by 4.96 times, and 0.1 mM sodium nitroprusside increases the total level of protein oxidative modification compared to the control group by 2.05 times and reduces reserve-adaptive capacity by 1.56 times. One of the possible mechanisms of this phenomenon may be the reduced activity of lysosomal proteinases. 2-hour and 4-hour in vitro incubation of lysosomes in 5 mM L-Nω-nitroarginine methyl ester is accompanied by an increase of secondary markers of the ratio of protein oxidative modification relatively to 1-hour exposure by 1.18 times and 1.35 times, respectively. At 1-hour in vitro incubation in 0.1 mM sodium nitroprusside, increase of secondary markers of protein oxidative degradation by 1.64 times occurs. Conclusion. The in vitro effect of 5 mM -Nω-nitroarginine methyl ester and 0.1 mM sodium nitroprusside results in visible changes of oxidative modification of rat liver lysosomal proteins.


Genetika ◽  
2005 ◽  
Vol 37 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Vladislava Galovic ◽  
Zorana Kotaranin ◽  
Srbislav Dencic

Analyzed in this paper were the in vitro effects of drought stress in 13 genotypes of winter wheat, one genotype of spring wheat, and three Triticale genotypes of different geographic origin. Callus tissue was induced from immature zygotic embryos (10-15 days after pollination) on a modified MS nutrient medium. After two weeks, callus tissue was transplanted onto the same medium enriched with 5% high-molecular polyethylene glycol (PEG 6000), which was used as the stress agent to produce the effect of drought chemically. A control group of calluses was grown on an identical medium but without PEG. After four weeks of growing calluses on these mediums, we assessed callus mass survival ability of the genotypes before the transplantation as well as percentage reduction of callus fresh weight after the transplantation onto the nutrient medium with 5% PEG. Statistically significant differences were found among the genotypes in their response to the induced stress. The best survival ability before the transplantation was found in the genotype Mexicol20 (83%), while the lowest was recorded in Slavija (11.3%). Culture growing under stress conditions significantly reduced callus fresh weight in all of the genotypes. The lowest decrease of the callus mass relative to control was recorded in Rozofskaja (14.4%) and the highest in Miranovska (58.4%), indicating the genotypes' tolerance levels towards drought stress.


2019 ◽  
Vol 131 (6) ◽  
pp. 1301-1315 ◽  
Author(s):  
Thomas J. Gerber ◽  
Valérie C. O. Fehr ◽  
Suellen D. S. Oliveira ◽  
Guochang Hu ◽  
Randal Dull ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Sevoflurane with its antiinflammatory properties has shown to decrease mortality in animal models of sepsis. However, the underlying mechanism of its beneficial effect in this inflammatory scenario remains poorly understood. Macrophages play an important role in the early stage of sepsis as they are tasked with eliminating invading microbes and also attracting other immune cells by the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, the authors hypothesized that sevoflurane mitigates the proinflammatory response of macrophages, while maintaining their bactericidal properties. Methods Murine bone marrow–derived macrophages were stimulated in vitro with lipopolysaccharide in the presence and absence of 2% sevoflurane. Expression of cytokines and inducible NO synthase as well as uptake of fluorescently labeled Escherichia coli (E. coli) were measured. The in vivo endotoxemia model consisted of an intraperitoneal lipopolysaccharide injection after anesthesia with either ketamine and xylazine or 4% sevoflurane. Male mice (n = 6 per group) were observed for a total of 20 h. During the last 30 min fluorescently labeled E. coli were intraperitoneally injected. Peritoneal cells were extracted by peritoneal lavage and inducible NO synthase expression as well as E. coli uptake by peritoneal macrophages was determined using flow cytometry. Results In vitro, sevoflurane enhanced lipopolysaccharide-induced inducible NO synthase expression after 8 h by 466% and increased macrophage uptake of fluorescently labeled E. coli by 70% compared with vehicle-treated controls. Inhibiting inducible NO synthase expression pharmacologically abolished this increase in bacteria uptake. In vivo, inducible NO synthase expression was increased by 669% and phagocytosis of E. coli by 49% compared with the control group. Conclusions Sevoflurane enhances phagocytosis of bacteria by lipopolysaccharide-challenged macrophages in vitro and in vivo via an inducible NO synthase–dependent mechanism. Thus, sevoflurane potentiates bactericidal and antiinflammatory host-defense mechanisms in endotoxemia.


Author(s):  
Samuel Estrada-Soto ◽  
Litzia Cerón-Romero ◽  
Gabriel Navarrete-Vázquez ◽  
Edgar Rosales-Ortega ◽  
Jaime H. Gómez-Zamudio ◽  
...  

The current study aimed to determine the antidiabetic and antidyslipidemic activities of moronic acid methyl ester (1) by in vivo, in vitro, in silico and molecular biology studies. Compound 1 was evaluated to establish its dose-dependent antidiabetic and antihyperglycemic (50 mg/kg) activities, in diabetic and normoglycemic male CD1 mice, respectively. Also, compound 1 was subjected to a sub-acute study (50 mg/kg/day for eight days) to determine blood biochemical profiles and the expression of PTP-1B, GLUT4, PPAR-α, PPAR-γ, adiponectin, IL-1β, and MCP1 in adipose tissue of animals after treatment. Different doses in acute administration of 1 decreased glycemia (p < 0.05), compared with vehicle, showing greater effectiveness in the range 50-160 mg/kg. Also, the oral glucose tolerance test (OGTT) showed that 1 induced a significant antihyperglycemic action by opposing the hyperglycemic peak (p < 0.05). Moreover, 1 subacute administration decrease glucose and triglycerides levels after treatment (p < 0.05); while the expression of PPAR-α and γ, adiponectin and GLUT4 displayed an increase (p< 0.05) compared with the diabetic control group. In conclusion, compound 1 showed antihyperglycemic, antidiabetic and antidyslipidemic effects in normal and diabetic mice, probably due to insulin sensitization through increase mRNA expression of GLUT4, PPAR-α, PPAR-γ and adiponectin genes.


1997 ◽  
Vol 9 (4) ◽  
pp. 433 ◽  
Author(s):  
María Beléen Herrero ◽  
J. Marcelo Viggiano ◽  
Silvina Pérez Martínez ◽  
Martha F. de Gimeno

In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitationin vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 µM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reactionin vitro and that nitric oxide induces this event.


Author(s):  
V. V. Shcherba ◽  
T. Ya. Yaroshenko ◽  
R. M. Kubant ◽  
M. M. Korda

Introduction. The inflammatory-dystrophic process in periodontium is accompanied by its hypoxia, which causes the activation of free radical oxidation processes. Tissue destruction in periodontal diseases is considered to be the result of an altered inflammatory/immune response to microbial plaque and involves massive release of neutrophils, reactive oxygen species and enzymes. The aim of the study – to establish the protein oxidative modification in blood and periodontium in case of periodontitis combined with hyper- and hypothyroidism in rats. Research Methods. Experimental studies were carry out on 48 mature male, nonliner, white rats, which were divided into the following groups: І – control animals; ІІ – animals with periodontitis; ІІІ – animals with periodontitis combined with hyperthyroidism; IV – animals with periodontitis combined with hypothyroidism. Protein oxidative modification (POM) was determined in blood serum and periodontium homogenate by the method of I.F. Meschyshyn. Results and Discussion. The results of our studies showed that the intensity of the processes of protein oxidative modification was significantly increased in animals of all experimental groups vs control group. The content of aldehyde- and ketone derivatives of the alkali nature changed more pronounced than the content of aldehyde and ketone derivatives of neutral nature. Conclusions. Thus, the experimental periodontitis is accompanied by a marked increase in the intensity of the protein oxidative modifications both in the homogenate of periodontal tissues and in the blood serum. Imbalance of thyroid hormones increases oxidative stress in experimental periodontitis, especially pronounced in hyperthyroidism.


2005 ◽  
Vol 99 (4) ◽  
pp. 1412-1421 ◽  
Author(s):  
Christopher R. Woodman ◽  
Mark A. Thompson ◽  
James R. Turk ◽  
M. Harold Laughlin

We tested the hypothesis that exercise (Ex) training attenuates hypercholesterolemia-induced impairment of endothelium-dependent relaxation (EDR) in brachial (Br) arteries of adult male pigs by enhancing nitric oxide (NO)-mediated EDR. Adult male pigs were fed a normal-fat (NF) or high-fat/cholesterol (HF) diet for 20 wk. Four weeks after the diet was initiated, pigs were trained or remained sedentary (Sed) for 16 wk, yielding four groups: 1) NF-Sed, 2) NF-Ex, 3) HF-Sed, and 4) HF-Ex. EDR of Br artery rings was assessed in vitro with acetylcholine (ACh) and bradykinin (BK). ACh- and BK-induced relaxation was not impaired by HF; however, relaxation responses were enhanced by Ex in NF and HF arteries. To determine the mechanism(s) by which Ex improved EDR, ACh- and BK-induced relaxation was assessed in the presence of NG-nitro-l-arginine methyl ester (l-NAME; to inhibit NO synthase), indomethacin (Indo; to inhibit cyclooxygenase), or l-NAME + Indo. ACh- and BK-induced relaxation was inhibited by l-NAME, and l-NAME + Indo, in all groups of arteries. Indo did not inhibit ACh-induced relaxation in any group but did inhibit BK-induced relaxation in HF-Ex arteries. In the presence of l-NAME or l-NAME + Indo, ACh- and BK-induced relaxation in HF-Ex arteries remained greater than in HF-Sed arteries. However, in the presence of Indo, ACh-induced relaxation in HF-Ex arteries was no longer greater than in HF-Sed arteries. These results indicate that EDR is not impaired by hypercholesterolemia in Br arteries from adult male pigs; however, Ex improves EDR in HF Br arteries by enhancing production of endothelium-derived hyperpolarizing factor and/or prostacyclin.


Sign in / Sign up

Export Citation Format

Share Document