Growth characteristics of experimental live influenza vaccine strains with modified NP and NS genes

2021 ◽  
Vol 21 (3) ◽  
pp. 135-139
Author(s):  
Polina I. Prokopenko ◽  
Виктория A. Matyushenko ◽  
Irina N. Isakova-Sivak ◽  
Larisa G. Rudenko

BACKGROUND: Vaccination is the most effective means of fighting influenza epidemics, but the immunogenicity of licensed influenza vaccines is not always satisfactory. One of the ways to increase the immunogenicity of an attenuated live influenza vaccine is to shorten the open reading frame of the NS1 protein, a modulator of innate antiviral immunity. In addition, the T-cell response to vaccination can be optimized by including the NP gene from the epidemic parental virus into the genome of vaccine strains. MATERIALS AND METHODS: The open reading frame of the NS1 protein of the master donor virus A/Leningrad/134/17/57 was truncated to 126 amino acids by site-directed mutagenesis. The HA, NA, and NP genes of the model virus A/Anhui/1/2013 (H7N9) were cloned into the pCIPolISapIT vector. The rescue of recombinant influenza viruses was performed by transfection of Vero cells with a desired set of plasmids. The growth properties of the recombinant viruses were determined in embryonated chicken eggs incubated at different temperatures, as well as in the tissues of the respiratory tract of mice (nasal turbinates, lungs). RESULTS: Experimental live influenza vaccine strains of subtype H7N9 with genome compositions 6:2 and 5:3 and carrying a full-length or truncated NS1 gene were actively replicated in eggs under optimal conditions, while maintaining the temperature-sensitive and cold-adapted phenotypes characteristic of classical live influenza vaccine strains. All viruses lacked the ability to grow in the lungs of C57BL/6J mice, which confirms the attenuated phenotype of the viruses. In the nasal passages of mice, only viruses with the full-length NS1 gene replicated, while viruses expressing the truncated NS1 protein were not detected in the respiratory tract of animals. CONCLUSIONS: The results indicate that modification of the NS1 gene of the vaccine virus and the inclusion of wild-type NP gene in its genome does not affect its growth characteristics in eggs. A decrease in the activity of viral replication in the upper respiratory tract of mice with a shortening of the NS1 open reading frame indicates an increase in the attenuating properties of modified vaccines, which opens up prospects for the use of new vaccines in children under three years of age.

2016 ◽  
Vol 90 (9) ◽  
pp. 4696-4705 ◽  
Author(s):  
Rei-Lin Kuo ◽  
Li-Hsin Li ◽  
Sue-Jane Lin ◽  
Zong-Hua Li ◽  
Guang-Wu Chen ◽  
...  

ABSTRACTThe NS1 protein encoded by influenza A virus antagonizes the interferon response through various mechanisms, including blocking cellular mRNA maturation by binding the cellular CPSF30 3′ end processing factor and/or suppressing the activation of interferon regulatory factor 3 (IRF3). In the present study, we identified two truncated NS1 proteins that are translated from internal AUGs at positions 235 and 241 of the NS1 open reading frame. We analyzed the cellular localization and function of the N-truncated NS1 proteins encoded by two influenza A virus strains, Udorn/72/H3N2 (Ud) and Puerto Rico/8/34/H1N1 (PR8). The NS1 protein of PR8, but not Ud, inhibits the activation of IRF3, whereas the NS1 protein of Ud, but not PR8, binds CPSF30. The truncated PR8 NS1 proteins are localized in the cytoplasm, whereas the full-length PR8 NS1 protein is localized in the nucleus. The infection of cells with a PR8 virus expressing an NS1 protein containing mutations of the two in-frame AUGs results in both the absence of truncated NS1 proteins and the reduced inhibition of activation of IRF3 and beta interferon (IFN-β) transcription. The expression of the truncated PR8 NS1 protein by itself enhances the inhibition of the activation of IRF3 and IFN-β transcription in Ud virus-infected cells. These results demonstrate that truncated PR8 NS1 proteins contribute to the inhibition of activation of this innate immune response. In contrast, the N-truncated NS1 proteins of the Ud strain, like the full-length NS1 protein, are localized in the nucleus, and mutation of the two in-frame AUGs has no effect on the activation of IRF3 and IFN-β transcription.IMPORTANCEInfluenza A virus causes pandemics and annual epidemics in the human population. The viral NS1 protein plays a critical role in suppressing type I interferon expression. In the present study, we identified two novel truncated NS1 proteins that are translated from the second and third in-frame AUG codons in the NS1 open reading frame. The N-terminally truncated NS1 encoded by the H1N1 PR8 strain of influenza virus that suppresses IRF3 activation is localized primarily in the cytoplasm. We demonstrate that this truncated NS1 protein by itself enhances this suppression, demonstrating that some strains of influenza A virus express truncated forms of the NS1 protein that function in the inhibition of cytoplasmic antiviral events.


2009 ◽  
Vol 90 (12) ◽  
pp. 2990-2994 ◽  
Author(s):  
Georg Kochs ◽  
Luis Martínez-Sobrido ◽  
Stefan Lienenklaus ◽  
Siegfried Weiss ◽  
Adolfo García-Sastre ◽  
...  

Influenza viruses lacking the interferon (IFN)-antagonistic non-structural NS1 protein are strongly attenuated. Here, we show that mutants of a highly virulent variant of A/PR/8/34 (H1N1) carrying either a complete deletion or C-terminal truncations of NS1 were far more potent inducers of IFN in infected mice than NS1 mutants derived from standard A/PR/8/34. Efficient induction of IFN correlated with successful initial virus replication in mouse lungs, indicating that the IFN response is boosted by enhanced viral activity. As the new NS1 mutants can be handled in standard biosafety laboratories, they represent convenient novel tools for studying virus-induced IFN expression in vivo.


2004 ◽  
Vol 70 (12) ◽  
pp. 7140-7147 ◽  
Author(s):  
Jaishree Vellore ◽  
Samuel E. Moretz ◽  
Bert C. Lampson

ABSTRACT The production of a stable cDNA copy of an unstable RNA molecule by reverse transcription is a widely used and essential technology for many important applications, such as the construction of gene libraries, production of DNA probes, and analysis of gene expression by reverse transcriptase PCR (RT-PCR). However, the synthesis of full-length cDNAs is frequently inefficient, because the RT commonly used often produces truncated cDNAs. Synthesizing cDNA at higher temperatures, on the other hand, can provide a number of improvements. These include increasing the length of cDNA product, greater accuracy, and greater specificity during reverse transcription. Thus, an RT that remains stable and active at hot temperatures may produce better-quality cDNAs and improve the yield of full-length cDNAs. Described here is the discovery of a gene, designated trt, from the genome of the thermophilic bacterium Bacillus (Geobacillus) stearothermophilus strain 10. The gene codes for an open reading frame (ORF) similar to the ORFs encoded by group II introns found in bacteria. The gene was cloned and overexpressed in Escherichia coli, and its protein product was partially purified. Like the host organism, the Trt protein is a heat-stable protein with RT activity and can reverse transcribe RNA at temperatures as high as 75°C.


2000 ◽  
Vol 74 (19) ◽  
pp. 9062-9070 ◽  
Author(s):  
Richard Molenkamp ◽  
Sophie Greve ◽  
Willy J. M. Spaan ◽  
Eric J. Snijder

ABSTRACT Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156–3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3′- and 5′-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5′-proximal region was found to be approximately 100-fold lower than that in the 3′-proximal part of the genome.


2006 ◽  
Vol 80 (22) ◽  
pp. 11009-11018 ◽  
Author(s):  
Jürgen A. Richt ◽  
Porntippa Lekcharoensuk ◽  
Kelly M. Lager ◽  
Amy L. Vincent ◽  
Christina M. Loiacono ◽  
...  

ABSTRACT Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1▴126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1▴126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1▴126 MLV as a vaccine to differentiate infected from vaccinated animals.


2021 ◽  
Vol 21 (3) ◽  
pp. 141-146
Author(s):  
Ekaterina A. Stepanova ◽  
Ekaterina A. Bazhenova ◽  
Elena V. Krutikova ◽  
Nataliya V. Larionova ◽  
Irina V. Kiseleva ◽  
...  

BACKGROUND: Up to date Russian live attenuated influenza vaccines are produced in developing chicken embryos. During passaging in embryos, the virus isolated from the human respiratory tract undergoes adaptation to the receptors in embryos. The population of the virus, at any passage in chicken embryos, is heterogeneous and contains variants of viruses with one or another set of adaptive substitutions. Before preparing the vaccine strain, the population of the epidemic virus is cloned and the genetic sequence of the hemagglutinin and neuraminidase clones is analyzed. The growth characteristics of the vaccine strain and its antigenic properties depend on the correct choice of the variant of the virus. AIM: The aim of the study was to select the variant of the H3N2 subtype virus for the preparation of a vaccine reassortant based on data on the composition of the population and an assessment of its growth properties. MATERIALS AND METHODS: Viruses were cloned in developing chicken embryos, sequencing of the hemagglutinin and neuraminidase genes of the clones was performed. On the basis of the clones selected based on the results of the analysis of the population, strains of a live influenza vaccine were obtained by the reassortment in the chicken embryos. The growth characteristics of the strains, the phenotype in eggs, and the antigenic properties by hemagglutination inhibition test were evaluated. RESULTS: The influenza virus A/Kansas/14/2017 recommended by WHO for the epidemic season 2019-2020 acquired a pair of D190N + N246T substitutions dominating in the population at the 7th passage in eggs. From the population of A/Kansas/14/2017-like strain A/Brisbane/34/2018, from the third passage in the eggs, it was possible to obtain a variant of the virus with substitutions G186V + S219Y in hemagglutinin. The growth characteristics of the strain based on A/Kansas/14/2017 (passage E7) were significantly inferior to the characteristics of the strain based on A/Brisbane/34/2018 (passage E3), in the absence of differences in antigenic properties. CONCLUSIONS: The variant of egg adaptation of hemagglutinin G186V in strains of clade 3c.3a is preferable for the preparation of live influenza vaccine strains; variant N246T is not optimal. When preparing strains, it is necessary to analyze the composition of the virus population by cloning and choose the most optimal option for preparing strains. The persistence of egg-adaptive substitutions in passaged variants of the virus is not always optimal for strains of live influenza vaccine, and therefore it is preferable to use the population as close as possible to the initial variant to start work on the strain.


1991 ◽  
Vol 277 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R Dumas ◽  
M Lebrun ◽  
R Douce

Acetohydroxy acid reductoisomerase (AHRI), the second enzyme in the parallel isoleucine/valine-biosynthetic pathway, catalyses an unusual two-step reaction in which the substrate, either 2-acetolactate or 2-aceto-2-hydroxybutyrate, is converted via an alkyl migration and an NADPH-dependent reduction to give 2,3-dihydroxy-3-methylbutyrate or 2,3-dihydroxy-3-methylvalerate respectively. We have isolated and characterized a full-length cDNA from a lambda gt11 spinach library encoding the complete acetohydroxy acid reductoisomerase protein precursor. The 2050-nucleotide sequence contains a 1785-nucleotide open reading frame. The derived amino acid sequence indicates that the protein precursor consists of 595 amino acid residues including a presequence peptide of 72 amino acid residues. The N-terminal sequence of the first 16 amino acid residues of the purified AHRI confirms the identity of the cDNA. The derived amino acid sequence from this open reading frame shows 23% identity with the deduced amino acid sequences of the Escherichia coli and Saccharomyces cerevisiae AHRI proteins. There are two blocks of conserved amino acid residues in these three proteins. One of these is a sequence similar to the ‘fingerprint’ region of the NAD(P)H-binding site found in a large number of NAD(P)H-dependent oxidoreductases. The other, a short sequence (Lys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Ser-His-Gly-Phe) containing the amino acids lysine and histidine, could well be the catalytic site of the first step of the AHRI reaction. Southern-blot analysis indicated that AHRI is encoded by a single gene per haploid genome of about 7.5 kbp containing at least four introns.


2003 ◽  
Vol 77 (6) ◽  
pp. 3569-3577 ◽  
Author(s):  
Pamela J. Glass ◽  
Carl Q. Zeng ◽  
Mary K. Estes

ABSTRACT Expression of the Norwalk virus open reading frame 3 (ORF3) in Spodoptera frugiperda (Sf9) cells yields two major forms, the predicted 23,000-molecular-weight (23K) form and a larger 35K form. The 23K form is able to interact with the ORF2 capsid protein and be incorporated into virus-like particles. In this paper, we provide mass spectrometry evidence that both the 23K and 35K forms are composed only of the ORF3 protein. Two-dimensional gel electrophoresis and phosphatase treatment showed that the 35K form results solely from phosphorylation and that the 35K band is composed of several different phosphorylated forms with distinct isoelectric points. Furthermore, we analyzed deletion and point mutants of the ORF3 protein. Mutants that lacked the C-terminal 33 amino acids (ORF31-179, ORF31-152, and ORF31-107) no longer produced the 35K form. An N-terminal truncation mutant (ORF351-212) and a site-directed mutant (ORF3T201V) were capable of producing the larger form, which was converted to the smaller form by treatment with protein phosphatase. These data suggest that the region between amino acids 180 and 212 is phosphorylated, and mass spectrometry showed that amino acids Arg196 to Arg211 are not phosphorylated; thus, phosphorylation of the serine-threonine-rich region from Thr181 to Ser193 must be involved in the generation of the 35K form. Studies of the interaction between the ORF2 protein and full-length and mutated ORF3 proteins showed that the full-length ORF3 protein (ORF3FL), ORF31-179, ORF31-152, and ORF351-212 interacted with the ORF2 protein, while an ORF31-107 protein did not. These results indicate that the region of the ORF3 protein between amino acids 108 and 152 is responsible for interaction with the ORF2 protein.


Sign in / Sign up

Export Citation Format

Share Document