scholarly journals Hardware-in-the-loop simulation of high-speed maglev transportation five-segment propulsion system based on dSPACE

2018 ◽  
Vol 4 (2) ◽  
pp. 62-72
Author(s):  
Feng Qin ◽  
Ying Lin ◽  
Diqiang Lu

Aim: For exploring and testing the key technology of high-speed maglev transportation propulsion control system, this paper designs and establishes a hardware-in-the-loop (HIL) real-time simulation system of the high-speed maglev transportation five-segment propulsion system. Materials and methods of the studies: According to the route conditions and propulsion segment division of Shanghai maglev demonstration and operation line, the real-time simulation platform based on dSPACE multiprocessor systems is implemented. The simulation system can achieve the functional simulation of all the high-power related equipment in the 5-segment area, including 8 sets of high-power converter units, 2 sets of medium-power converter units, 2 sets of low-power converter units, five-segment trackside switch stations and long-stator linear synchronous motors. The mathematical models of linear motors and converters are built in MATLAB/Simulink and System Generator, after compiling, they can be downloaded and executed in Field Programmable Logic Array (FPGA). All the interfaces connecting the simulation system to the propulsion control system physical equipment use real physical components as in the field, such as analog I/O, digital I/O, optical signals and Profibus. Results: By using CPU+FPGA hardware configuration, the simulation steps are greatly shortened and the response speed and accuracy of real-time simulation system are improved. The simulation system can simulate multiple operating modes such as multi-segment, multi-vehicle, double-track, double-feeding, step-by-step stator section changeover, and so on. The simulation results show that the maximum speed of the simulation system can reach 500 km/h. Conclusion: This HIL system can provide detailed real-time on-line test and verification of high speed maglev propulsion control system.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5764
Author(s):  
Baoling Guo ◽  
Amgad Mohamed ◽  
Seddik Bacha ◽  
Mazen Alamir ◽  
Cédric Boudinet ◽  
...  

Variable Speed Hydro-Electric Plant (VS-HEP) equipped with power electronics has been increasingly introduced into the hydraulic context. This paper is targeting a VS-HEP Power Hardware-In-the-Loop (PHIL) real-time simulation system, which is dedicated to different hydraulic operation schemes tests and control laws validation. Then, a proper hydraulic model will be the key factor for building an efficient PHIL real-time simulation system. This work introduces a practical and generalised modelling hydraulic modelling approach, which is based on ‘Hill Charts’ measurements provided by industrial manufacturers. The hydraulic static model is analytically obtained by using mathematical optimization routines. In addition, the nonlinear dynamic model of the guide vane actuator is introduced in order to evaluate the effects of the induced dynamics on the electric control performances. Moreover, the reduced-scale models adapted to different laboratory conditions can be established by applying scaling laws. The suggested modelling approach enables the features of decent accuracy, light computational complexity, high flexibility and wide applications for their implementations on PHIL real-time simulations. Finally, a grid-connected energy conversion chain of bulb hydraulic turbine associated with a permanent magnet synchronous generator is chosen as an example for PHIL design and performance assessment.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Sign in / Sign up

Export Citation Format

Share Document