Fault Rerupture during the July 2019 Ridgecrest Earthquake Pair from Joint Slip Inversion of InSAR, Optical Imagery, and GPS

2020 ◽  
Vol 110 (4) ◽  
pp. 1627-1643 ◽  
Author(s):  
Yohai Magen ◽  
Alon Ziv ◽  
Asaf Inbal ◽  
Gidon Baer ◽  
James Hollingsworth

ABSTRACT The Ridgecrest earthquake pair ruptured a previously unknown orthogonal fault system in the eastern California shear zone. The stronger of the two, an Mw 7.1 earthquake that occurred on 6 July 2019, was preceded by an Mw 6.4 foreshock that occurred 34 hr earlier. In this study, distinct final slip distributions for the two earthquakes are obtained via joint inversion of Interferometric Synthetic Aperture Radar (InSAR), optical imagery, and Global Positioning System (GPS) measurements. Special attention is paid to the merging of dense (e.g., InSAR and optical imagery) and sparse geodetic (e.g., GPS) datasets. In addition, a new approach is introduced for data and model discretization through intermittent model- and data-space reconditioning that stabilizes the inversion, thus ensuring that small changes in the data space do not cause disproportionate large changes to the model space. Although the coseismic slip of the Mw 6.4 earthquake was complex, involving three distinct asperities distributed among an intersecting orthogonal set of faults, the coseismic slip of the Mw 7.1 earthquake was limited to the main northwest-striking fault. In addition to the Mw 7.1 earthquake, that northwest-striking fault plane also hosted one of the Mw 6.4 asperities. Slip on this coplanar foreshock asperity increased the shear stress at the future site of the Mw 7.1 hypocenter, and triggered a vigorous aftershock activity on the main northwest fault that culminated in its rupture. This, in turn, reactivated the coplanar foreshock asperity. In addition to failing twice within 34 hr, we find that the reruptured asperity slipped about six times more during the Mw 7.1 than during the Mw 6.4 earthquake. This repeated failure is indicative of an incomplete stress drop and premature rupture arrest during the Mw 6.4 foreshock, requiring an efficient frictional strengthening and emphasizing the causal link between highly rate-dependent friction, dynamic frictional restrengthening, and partial stress drop that has been observed in numerical studies of frictional sliding.

Author(s):  
Jean-Paul Ampuero ◽  
Jérémy Billant ◽  
Florent Brenguier ◽  
Olivier Cavalié ◽  
Francoise Courboulex ◽  
...  

<p>An earthquake of magnitude 5 (Mw 4.9) occurred near the town of Le Teil, France on November 11 2019, causing damage locally and concern due to its proximity to nuclear facilities. Despite its moderate magnitude, this earthquake offers unique opportunities to advance basic and applied research on earthquakes in general, including our understanding of the largest and most destructive earthquakes and induced seismicity. We present here an overview of the source characteristics of this event and, based on analysis of InSAR and seismological observations and optical images, we discuss its potential relation to human activity. We also discuss the emerging unique research opportunities.</p><p>The Le Teil earthquake occurred in a low seismicity region, a moderate hazard zone that has nevertheless experienced damaging earthquakes in the past. Its hypocentral depth is particularly shallow, less than 1.5 km. Radar images delineate the surface rupture and constrain well the coseismic slip distribution. The surface rupture corresponds to the previously mapped La Rouvière fault, an ancient normal fault reactivated as reverse-faulting by the Le Teil earthquake. Slip is predominantly confined in the top ~1 km and extends along ~4.5 km along-strike with two main slip asperities and stress drop of a few MPa. A large cement quarry sits on top of the deep edge of the rupture area, ~1 km above the fault. Based on optical images we estimate the distribution of mass extracted from the nearby quarry since 1947. We then compute the induced Coulomb stresses on the fault: they are favorable for reverse faulting and reach about 150 kPa, within the range of stresses that have been previously reported to trigger earthquakes, but substantially smaller than the coseismic stress drop. Analysis of the mainshock and quarry blast signals on the nearest stations (8.5 to 45 km distance) places the mainshock epicenter within the area of influence of the quarry-induced stresses. </p><p>These analyses so far indicate that the Le Teil event is likely a triggered earthquake: its initiation was favored by the quarry-induced stresses, but the bulk of its rupture propagation was enabled by naturally pre-existing stresses. We also report on directivity analyses based on various data subsets, which remain to be reconciled, possibly pointing to a non-trivial rupture path.</p><p>The characteristics of the Le Teil earthquake bear on important questions: how can earthquakes nucleate at such shallow depth? what confines slip at such shallow depth? do structural features control the patchy distribution of slip? how do elongated ruptures stop? It also offers a unique opportunity to study directly, by drilling at seismogenic depth, the three key spots of an earthquake: its hypocenter, its large slip area and its arrest area. The high aspect ratio of the rupture, comparable to that of the largest earthquakes, opens a window into the physics of very large earthquakes. Continued research would also address implications for seismic hazard in low-seismicity areas, including the safety of nearby nuclear power plants, especially by monitoring the unbroken sections of the fault system.</p>


Author(s):  
Yong Zhang ◽  
Wanpeng Feng ◽  
Xingxing Li ◽  
Yajing Liu ◽  
Jieyuan Ning ◽  
...  

Abstract The 8 August 2017 Mw 6.5 Jiuzhaigou earthquake occurred in a tectonically fractured region in southwest China. We investigate the multifault coseismic rupture process by jointly analyzing teleseismic, strong-motion, high-rate Global Positioning System, and Interferometric Synthetic Aperture Radar (InSAR) datasets. We clearly identify two right-stepping fault segments and a compressional stepover based on variations in focal mechanisms constrained by coseismic InSAR deformation data. The average geometric parameters of the northwest and southeast segments are strike = 130°/dip = 57° and strike = 151°/dip = 70°, respectively. The rupture model estimated from a joint inversion of the seismic and geodetic datasets indicates that the rupture initiated on the southeastern segment and jumped to the northwestern segment, resulting in distinctive slip patches on the two segments. A 4-km-long coseismic slip gap was identified around the stepover, consistent with the aftershock locations and mechanisms. The right-stepping segmentation and coseismic rupture across the compressional stepover exhibited by the 2017 Jiuzhaigou earthquake are reminiscent of the multifault rupture pattern during the 1976 Songpan earthquake sequence farther south along the Huya fault system in three successive Ms∼7 events. Although the common features of fault geometry and stepover may control the similarity in event locations and focal mechanisms of the 2017 and 1976 sequences, the significantly wider (~15 km) stepover in the 1976 sequence likely prohibited coseismic rupture jumping and hence reduced seismic hazard.


2020 ◽  
Vol 110 (4) ◽  
pp. 1701-1715 ◽  
Author(s):  
Qiang Qiu ◽  
Sylvain Barbot ◽  
Teng Wang ◽  
Shengji Wei

ABSTRACT We investigate the deformation processes during the 2019 Ridgecrest earthquake sequence by combining Global Navigation Satellite Systems, strong-motion, and Interferometric Synthetic Aperture Radar datasets in a joint inversion. The spatial complementarity of slip between the Mw 6.4 foreshock, Mw 7.1 mainshock, and afterslip suggests the importance of static stress transfer as a triggering mechanism during the rupture sequence. The coseismic slip of the foreshock concentrates mainly on the east-northeast–west-southwest fault above the hypocenter at depths of 2–8 km. The slip distribution of the mainshock straddles the region above the hypocenter with two isolated patches located to the north-northwest and south-southeast, respectively. The geodetically determined moment magnitudes of the foreshock and mainshock are equivalent to moment magnitudes Mw 6.4 and 7.0, assuming a rigidity of 30 GPa. We find a significant shallow slip deficit (>60%) in the Ridgecrest ruptures, likely resulting from the immature fault system in which the sequence occurred. Rapid afterslip concentrates at depths of 2–6 km, surrounding the rupture areas of the foreshock and mainshock. The ruptures also accelerated viscoelastic flow at lower-crustal depths. The Garlock fault was loaded at several locations, begging the question of possible delayed triggering.


1990 ◽  
Vol 80 (6A) ◽  
pp. 1553-1570 ◽  
Author(s):  
R. B. Horner ◽  
R. J. Wetmiller ◽  
M. Lamontagne ◽  
M. Plouffe

Abstract Relative locations of 323 large aftershocks (M 3.0 or greater) in the period from 5 October 1985 to 25 March 1988 show that the Ms 6.6 event on 5 October 1985 initiated at 62.208°N, 124.217°W, about 2.5 km northeast of the Ms 6.9 main shock on 23 December 1985. The overall aftershock distribution suggests the October rupture was primarily a west-dipping, low-angle thrust. In subsequent aftershock activity, the main rupture plane was marked by a distinct quiescent area of about 200 km2 that persisted until the 23 December event. Most of the stress drop and slip occurred in this area. Following the 23 December rupture, a similar sized quiescent zone was also observed; however, it was only evident during the first 24 hr of the aftershock sequence, and the area was about 50 per cent too small to yield the overall stress drop. The additional area appeared to come from secondary rupture zones that developed coincident with the main shock rupture. Precise locations of 182 small (M 3.0 or less) aftershocks recorded during a third field survey from 12 to 21 September 1986 indicated at least one and probably three high-angle faults. Composite mechanism solutions showed thrust faulting except in a region directly south of the main shock rupture areas where there is a bend in one of the secondary fault zones and a concentration of aftershock activity. Mechanism solutions calculated for five of the largest aftershocks in the same region also indicated a similar variability. Development of secondary fault zones explained the increased complexity of the December event and may also provide an explanation for the vertical peak acceleration exceeding 2 g that was recorded about 10 sec after the December rupture initiated.


1994 ◽  
Vol 37 (6) ◽  
Author(s):  
D. J. Andrews

Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1) regeneration of stress irregularities in an earthquake; 2) the concentration of stress drop in an earthquake into asperities; 3) starting and stopping of earthquake slip at fault junctions, and 4) self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the volume increment for a given slip increment becomes larger. A juction with past accumulated slip ??0 is a strong barrier to earthquakes with maximum slip um < 2 (P/µ) u0 = u0/50. As slip continues to occur elsewhere in the fault system, a stress concentration will grow at the old junction. A fresh fracture may occur in the stress concentration, establishing a new triple junction, and allowing continuity of slip in the fault system. The fresh fracture could provide the instability needed to explain earthquakes. Perhaps a small fraction (on the order of P/µ) of the surface that slips in any earthquake is fresh fracture. Stress drop occurs only on this small fraction of the rupture surface, the asperities. Strain change in the asperities is on the order of P/µ. Therefore this model predicts average strais change in an earthquake to be on the order of (P/µ)2 = 0.0001, as is observed.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Pierre-Louis Nordmann ◽  
Peder Eliasson ◽  
Joonsang Park

Risk assessment of CO2 storage requires the use of geophysical monitoring techniques to quantify changes in selected reservoir properties such as CO2 saturation, pore pressure and porosity. Conformance monitoring and associated decision-making rest upon the quantified properties derived from geophysical data, with uncertainty assessment. A general framework combining seismic and controlled source electromagnetic inversions with rock physics inversion is proposed with fully Bayesian formulations for proper quantification of uncertainty. The Bayesian rock physics inversion rests upon two stages. First, a search stage consists in exploring the model space and deriving models with associated probability density function (PDF). Second, an appraisal or importance sampling stage is used as a "correction" step to ensure that the full model space is explored and that the estimated posterior PDF can be used to derive quantities like marginal probability densities. Both steps are based on the neighbourhood algorithm. The approach does not require any linearization of the rock physics model or assumption about the model parameters distribution. After describing the CO2 storage context, the available data at the Sleipner field before and after CO2 injection (baseline and monitor), and the rock physics models, we perform an extended sensitivity study. We show that prior information is crucial, especially in the monitor case. We demonstrate that joint inversion of seismic and CSEM data is also key to quantify CO2 saturations properly. We finally apply the full inversion strategy to real data from Sleipner. We obtain rock frame moduli, porosity, saturation and patchiness exponent distributions and associated uncertainties along a 1D profile before and after injection. The results are consistent with geology knowledge and reservoir simulations, i.e., that the CO2 saturations are larger under the caprock confirming the CO2 upward migration by buoyancy effect. The estimates of patchiness exponent have a larger uncertainty, suggesting semi-patchy mixing behaviour.


2021 ◽  
Author(s):  
Léo Marconato ◽  
Philippe-Hervé Leloup ◽  
Cécile Lasserre ◽  
Séverine Caritg ◽  
Romain Jolivet ◽  
...  

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;The 2019, M&lt;sub&gt;w&lt;/sub&gt;4.9 Le Teil earthquake occurred in southeastern France, causing important damage in a slow deforming region.&amp;#160;Field based, remote sensing and seismological studies following the event revealed its very shallow depth, a rupture length of ~5 km with surface rupture evidences and a thrusting mechanism. We further investigate this earthquake by combining geological field mapping and 3D geology, InSAR time series analysis and coseismic slip inversion.&lt;/p&gt; &lt;p&gt;From structural, stratigraphic and geological data collected around the epicenter, we first produce a 3D geological model over a 70 km&lt;sup&gt;2&lt;/sup&gt; and 3 km deep zone surrounding the 2019 rupture, using the GeoModeller software. This model includes the geometry of the main faults and geological layers, and especially a geometry for La Rouvi&amp;#232;re Fault, an Oligocene normal fault likely reactivated during the earthquake.&lt;/p&gt; &lt;p&gt;We also generate a time series of the surface displacement by InSAR, based on Sentinel-1 data ranging from early January 2019 to late January 2020, using the NSBAS processing chain. The spatio-temporal patterns of the surface displacement for this limited time span show neither clear pre-seismic signal nor significant postseismic slip. We extract from the InSAR time series the coseismic displacement pattern, and in particular the along-strike slip distribution that shows spatial variations. The maximum relative displacement along the Line-Of-Sight is up to ~16 cm and is located in the southwestern part of the rupture.&lt;/p&gt; &lt;p&gt;We then invert for the slip distribution on the fault from the InSAR coseismic surface displacement field. We use a non-negative least square approach based on the CSI software and the fault surface trace defined in the 3D geological model, exploring the range of plausible fault dip values. Best-fitting dips range between 55&amp;#176; and 60&amp;#176;. Such values are slightly lower than those measured on La Rouvi&amp;#232;re Fault planes in the field. Our model confirms the reactivation of La Rouvi&amp;#232;re fault, with reverse slip at very shallow depth and two main slip patches reaching 30 cm and 24 cm of slip at 400-500m depth. We finally discuss how the 3D fault geometry and geological configuration could have impacted the slip distribution and propagation during the earthquake.&lt;/p&gt; &lt;p&gt;This study is a step to better quantify strain accumulation and assess the seismic hazard associated with other similar faults along the C&amp;#233;vennes fault system, in a densely populated area hosting several nuclear plants.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


2019 ◽  
Vol 116 (52) ◽  
pp. 26367-26375 ◽  
Author(s):  
Xuhua Shi ◽  
Paul Tapponnier ◽  
Teng Wang ◽  
Shengji Wei ◽  
Yu Wang ◽  
...  

The 2016, moment magnitude (Mw) 7.8, Kaikoura earthquake generated the most complex surface ruptures ever observed. Although likely linked with kinematic changes in central New Zealand, the driving mechanisms of such complexity remain unclear. Here, we propose an interpretation accounting for the most puzzling aspects of the 2016 rupture. We examine the partitioning of plate motion and coseismic slip during the 2016 event in and around Kaikoura and the large-scale fault kinematics, volcanism, seismicity, and slab geometry in the broader Tonga–Kermadec region. We find that the plate motion partitioning near Kaikoura is comparable to the coseismic partitioning between strike-slip motion on the Kekerengu fault and subperpendicular thrusting along the offshore West–Hikurangi megathrust. Together with measured slip rates and paleoseismological results along the Hope, Kekerengu, and Wairarapa faults, this observation suggests that the West–Hikurangi thrust and Kekerengu faults bound the southernmost tip of the Tonga–Kermadec sliver plate. The narrow region, around Kaikoura, where the 3 fastest-slipping faults of New Zealand meet, thus hosts a fault–fault–trench (FFT) triple junction, which accounts for the particularly convoluted 2016 coseismic deformation. That triple junction appears to have migrated southward since the birth of the sliver plate (around 5 to 7 million years ago). This likely drove southward stepping of strike-slip shear within the Marlborough fault system and propagation of volcanism in the North Island. Hence, on a multimillennial time scale, the apparently distributed faulting across southern New Zealand may reflect classic plate-tectonic triple-junction migration rather than diffuse deformation of the continental lithosphere.


2020 ◽  
Author(s):  
Fabrizio Romano ◽  
Haider Hasan ◽  
Stefano Lorito ◽  
Finn Løvholt ◽  
Beatriz Brizuela ◽  
...  

&lt;p&gt;On 28 September 2018 a Mw 7.5 strike-slip earthquake occurred on the Palu-Koro fault system in the Sulawesi Island. Immediately after the earthquake a powerful tsunami hit the Palu Bay causing large damages and numerous fatalities.&lt;/p&gt;&lt;p&gt;Several works, inverting seismic or geodetic data, clearly estimated the slip distribution of this event, but the causative source of the tsunami is still not completely understood; indeed, the strike-slip mechanism of the seismic source alone might not be sufficient to explain the large runups observed (&gt; 6 m) along the coast of the Palu Bay, and thus one or more additional non-seismic sources like a landslide could have contributed to generate the big tsunami. An insight of that can be found in an extraordinary collection of amateur videos, and on the only available tide gauge in the Bay, at Pantoloan, that showed evidence for a short period wave of at least 2-3 minutes, compatible with a landslide.&lt;/p&gt;&lt;p&gt;In this study, we attempt to discriminate the contribution in the tsunami generation of both the seismic source and &amp;#160;some supposed landslides distributed along the coast of the Bay.&lt;/p&gt;&lt;p&gt;In particular, we attempt to estimate the causative source of the tsunami by means of a nonlinear joint inversion of geodetic (InSAR) and runup data. We use a fault geometry consistent with the Sentinel-2 optical analysis results and analytically compute the geodetic Green&amp;#8217;s functions. The same fault model is used to compute the initial condition for the seismic tsunami Green&amp;#8217;s functions, including the contribution of the horizontal deformation due to the gradient of the bathymetry (10 m spatial resolution); the landslide tsunami Green&amp;#8217;s functions are computed the software BingClaw by placing several hypothetical sources in the Bay. In both the cases the tsunami propagation is modelled by numerically solving the nonlinear shallow water equations.&lt;/p&gt;&lt;p&gt;In this work we also attempt to address the validity of Green&amp;#8217;s functions approach (linearity) for earthquake and landslide sources as well as the wave amplitude offshore as predictor of nearby runup.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document