Exploring Physical Links between Fluid Injection and Nearby Earthquakes: The 2012 Mw 4.8 Timpson, Texas, Case Study

2020 ◽  
Vol 110 (5) ◽  
pp. 2350-2365 ◽  
Author(s):  
Dawid Szafranski ◽  
Benchun Duan

ABSTRACT In this work, we integrate a fluid-flow model of 3D deformable porous media with a dynamic rupture model of earthquakes in 3D heterogeneous geologic medium. The method allows us to go beyond fault failure potential analyses and to examine how big an earthquake can be if part of a fault reaches failure due to fluid injection. We apply the method to the 17 May 2012 Mw 4.8 Timpson, Texas, earthquake as a case study. The simulated perturbations of pore pressure and stress from wastewater injection at the time of the mainshock are high enough (several MPa) to trigger an earthquake. Dynamic rupture modeling could reproduce the major observations from the Mw 4.8 event, including its size, focal mechanism, and aftershock sequence, and thus building a more convincing physical link between fluid injection and the Mw 4.8 earthquake. Furthermore, parameter space studies of dynamic rupture modeling allow us to place some constraints on fault frictional properties and background stresses. For the Timpson case, we find that a dynamic friction coefficient of ∼0.3, a value of ∼0.1  m for the critical slip distance in the slip-weakening friction law, and uniform effective normal stress are associated with the Timpson earthquake fault. By reproducing main features of the aftershock sequence of the mainshock, we also demonstrate that the method has potential to become a predictive tool for fluid injection design in the future.

2015 ◽  
Vol 21 (47) ◽  
pp. 83-88
Author(s):  
Masayuki NAGANO ◽  
Ryo UEDA ◽  
Kenichi KATO ◽  
Yasuhiro OTSUKA ◽  
Kazuhito HIKIMA ◽  
...  

Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 464-468 ◽  
Author(s):  
Pathikrit Bhattacharya ◽  
Robert C. Viesca

Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid.


2019 ◽  
Vol 19 (5) ◽  
pp. 5_125-5_135
Author(s):  
Tetsushi WATANABE ◽  
Kenichi KATO ◽  
Yasuhiro OHTSUKA ◽  
Kazuhito HIKIMA ◽  
Tomiichi UETAKE ◽  
...  

Author(s):  
Zhenguo Zhang ◽  
Wenqiang Zhang ◽  
Danhua Xin ◽  
Kejie Chen ◽  
Xiaofei Chen

Abstract We explore the 2019 Mw 7.1 Ridgecrest earthquake dynamic rupture on the nonplanar fault with homogeneous dynamic parameters using a layered media model. Our model shows that this event produced an average of 1.9 m of right-lateral slip with a maximum slip of ∼4.2  m at the place near the epicenter, and the variation of fault-plane strike angles from the middle to the southeastern segment appears to have behaved as a “stress barrier,” which postponed the rupture. We also compare the synthetics based on our dynamic rupture with the field records and find good agreement with the static Global Positioning System (GPS) coseismic offsets and strong ground motion waveforms. Our work provides a dynamic-rupture interpretation of the Mw 7.1 Ridgecrest earthquake.


2020 ◽  
Author(s):  
Seok Goo Song ◽  
Chang Soo Cho ◽  
Geoffrey Ely

<p>An M 5.4 earthquake occurred in the southeastern part of the Korean Peninsula in 2017. It is an oblique thrust event that occurred at a relatively shallow depth (~ 5 km) although it did not create coseismic surface rupture. A coseismic slip model was successfully obtained by inverting the ground displacement field extracted by the InSAR data (Song and Lee, 2019). In this study, we performed spontaneous dynamic rupture modeling using the slip weakening friction law. The static stress drop distribution obtained by the coseismic slip model was used as an input stress field. We adopted high performance computing (HPC) using the parallelized dynamic rupture modeling code (SORD, Support Operator Rupture Dynamics). Although our target event is moderate-sized one, we can successfully produce a spontaneous dynamic rupture model using a relatively small initial nucleation patch (radius ~ 1 km) with a relatively small slip weakening distance (~ 5 cm). Our preliminary results show that the rupture creates an asperity near the initial nucleation zone with approximately 4 MPa stress drop, then propagates obliquely upward both in the northeast and southwest directions. Although we assumed a single planar fault plane in our current rupture modeling, it seems worthwhile to dynamically model the rupture process, including complex fault geometry in following studies. Dynamic rupture modeling for a natural earthquake provides an opportunity to understand the dynamic rupture characteristics of the earthquake, including both stress drop and fracture energy.</p>


2005 ◽  
Vol 32 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Takumi Yasuda ◽  
Yuji Yagi ◽  
Takeshi Mikumo ◽  
Takashi Miyatake

2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Robert M. Anderson ◽  
Amy M. Lambert

The island marble butterfly (Euchloe ausonides insulanus), thought to be extinct throughout the 20th century until re-discovered on a single remote island in Puget Sound in 1998, has become the focus of a concerted protection effort to prevent its extinction. However, efforts to “restore” island marble habitat conflict with efforts to “restore” the prairie ecosystem where it lives, because of the butterfly’s use of a non-native “weedy” host plant. Through a case study of the island marble project, we examine the practice of ecological restoration as the enactment of particular norms that define which species are understood to belong in the place being restored. We contextualize this case study within ongoing debates over the value of “native” species, indicative of deep-seated uncertainties and anxieties about the role of human intervention to alter or manage landscapes and ecosystems, in the time commonly described as the “Anthropocene.” We interpret the question of “what plants and animals belong in a particular place?” as not a question of scientific truth, but a value-laden construct of environmental management in practice, and we argue for deeper reflexivity on the part of environmental scientists and managers about the social values that inform ecological restoration.


2013 ◽  
Vol 4 (1) ◽  
pp. 3-26 ◽  
Author(s):  
Pernilla Liedgren ◽  
Lars Andersson

This study investigated how young teenagers, as members of a strong religious organization, dealt with the school situation and the encounter with mainstream culture taking place at school during the final years in Swedish primary school (age 13–15 years). The purpose was to explore possible strategies that members of a minority group, in this case the Jehovah’s Witnesses, developed in order to deal with a value system differing from that of the group. We interviewed eleven former members of the Jehovah’s Witnesses about their final years in compulsory Swedish communal school. The ages of the interviewees ranged between 24 and 46 years, and the interviewed group comprised six men and five women. Nine of the eleven interviewees had grown up in the countryside or in villages. All but two were ethnic Swedes. The time that had passed since leaving the movement ranged from quite recently to 20 years ago. The results revealed three strategies; Standing up for Your Beliefs, Escaping, and Living in Two Worlds. The first two strategies are based on a One-World View, and the third strategy, Living in Two Worlds, implies a Two-World View, accepting to a certain extent both the Jehovah’s Witnesses outlook as well as that of ordinary society. The strategy Standing up for Your Beliefs can be described as straightforward, outspoken, and bold; the youngsters did not show any doubts about their belief. The second subgroup showed an unshakeable faith, but suffered psychological stress since their intentions to live according to their belief led to insecurity in terms of how to behave, and also left them quite isolated. These people reported more absence from school. The youngsters using the strategy Living in Two Worlds appeared to possess the ability to sympathize with both world views, and were more adaptable in different situations.


Sign in / Sign up

Export Citation Format

Share Document