Evaluating Uncertainties of Phase Velocity Measurements from Cross-Correlations of Ambient Seismic Noise

2020 ◽  
Vol 91 (3) ◽  
pp. 1717-1729
Author(s):  
Yinhe Luo ◽  
Yingjie Yang ◽  
Jinyun Xie ◽  
Xiaozhou Yang ◽  
Fengru Ren ◽  
...  

Abstract Ambient-noise tomography (ANT) has become a well-established method to image the crust and uppermost mantle structures in the past 15 yr. Having a good estimate of uncertainties of phase velocity dispersion measurements in ANT is critical as they can guide the level of data fitting in tomography. However, to date, there are still no systemic studies to evaluate these uncertainties. In this study, we obtain cross correlations with different stacking durations from 17 yr of ambient-noise data recorded at 120 stations in the United States. We analyze the variations of signal-to-noise ratio (SNR) and phase velocities of cross correlations. We find that the uncertainties of phase velocities are affected by SNRs, interstation distances, and stacking durations. However, none of those three variables can be solely used as a proxy to estimate the uncertainties of phase velocity measurements. Based on our analysis, we graphically present empirical relations of uncertainties of phase velocity measurements as a function of SNR, interstation distance, and stacking duration. These relations can be employed as a guide to estimate phase velocity uncertainties in applications of ANT, assisting in evaluating the reliability of resulting models from ANT.

2020 ◽  
Vol 222 (2) ◽  
pp. 989-1002
Author(s):  
Jinyun Xie ◽  
Yingjie Yang ◽  
Yinhe Luo

SUMMARY Stacking of ambient noise correlations is a crucial step to extract empirical Green's functions (EGFs) between station pairs. The traditional method is to linearly stack all short-duration cross-correlation functions (CCFs) over a long period of time to obtain final stacks. It requires at least several months of ambient noise data to obtain reliable phase velocities at periods of several to tens of seconds from CCFs. In this study, we develop a new stacking method named root-mean-square ratio selection stacking (RMSR_SS) to reduce the time duration required for the recovery of EGFs from ambient noise. In our RMSR_SS method, rather than stacking all short-duration CCFs, we first judge if each of the short-duration CCF constructively contributes to the recovery of EGFs or not. Then, we only stack those CCFs which constructively contribute to the convergence of EGFs. By applying our method to synthetic noise data, we demonstrate how our method works in enhancing the signal-to-noise ratio of CCFs by rejecting noise sources which do not positively contribute to the recovery of EGFs. Then, we apply our method to real noise data recorded in western USA. We show that reliable and accurate phase velocities can be measured from 15-d long ambient noise data using our RMSR_SS method. By applying our method to ambient noise tomography (ANT), we can reduce the deployment duration of seismic stations from several months or years to a few tens of days, significantly improving the efficiency of ANT in imaging crust and upper-mantle structures.


2021 ◽  
Author(s):  
Yihe Xu ◽  
Sergei Lebedev ◽  
Raffaele Bonadio ◽  
Thomas Meier ◽  
Christopher Bean

<p>High-frequency seismic surface waves sample the top few tens of meters to the top few kilometres of the subsurface. They can be used to determine three-dimensional distributions of shear-wave velocities and to map the depths of discontinuities (interfaces) within the crust. Passive seismic imaging, using ambient noise as the source of signal, can thus be an effective tool of exploration for mineral, geothermal and other resources, provided that sufficient high-frequency signal is available in the ambient noise wavefield and that accurate, high-frequency measurements can be performed on this signal. Ambient noise imaging using the ocean-generated noise at 5-30 s periods is now a standard method, but less signal is available at frequencies high enough for deposit-scale imaging (0.2-30 Hz), and few studies have reported successful measurements in broad frequency bands. Here, we develop a workflow for the measurement of high-frequency, surface-wave phase velocities in very broad frequency ranges. Our workflow comprises (1) a new noise cross-correlation procedure that accounts for the non-stationary properties of the high frequency noise sources, removes bandpass filtering, replaces temporal normalization with short time window stacking, and drops the explicit spectral normalization by adopting cross-coherence; (2) a new phase-velocity measurement method that extends the bandwidth of reliable measurements by exploiting the (resolved) 2π ambiguity of phase-velocity measurements; (3) interstation-distance-dependent quality control that uses the similarity of subgroups of dispersion curves to reject outliers and identify the frequency ranges with accurate measurements. The workflow is highly automated and applicable to large arrays. Applying our method to data from a large-N array that operated for one month near Marathon, Ontario, Canada, we use rectangular subarrays with 150-m station spacing and, typically, 1 hour of data and obtain Rayleigh-wave phase-velocity measurements in a 0.55-23.8 Hz frequency range, spanning over 5.4 octaves, nearly twice the typical frequency range of 1.5-3 octaves in previous studies. Phase-velocity maps and the subregion-average 1D velocity models they constrain show a high-velocity anomaly consistent with the known, west-dipping gabbro intrusions beneath the area. The new structural information can improve our understanding of the geometry of the gabbro intrusions, hosting the Cu-PGE Marathon deposit.</p>


Author(s):  
Hamzeh Sadeghisorkhani ◽  
Ólafur Gudmundsson ◽  
Ka Lok Li ◽  
Ari Tryggvason ◽  
Björn Lund ◽  
...  

Summary Rayleigh-wave phase-velocity tomography of southern Sweden is presented using ambient seismic noise at 36 stations (630 station pairs) of the Swedish National Seismic Network (SNSN). We analyze one year (2012) of continuous recordings to get the first crustal image based on the ambient-noise method in the area. Time-domain cross-correlations of the vertical component between the stations are computed. Phase-velocity dispersion curves are measured in the frequency domain by matching zero crossings of the real spectra of cross-correlations to the zero crossings of the zeroth-order Bessel function of the first kind. We analyze the effect of uneven source distributions on the phase-velocity dispersion curves and correct for the estimated velocity bias before tomography. To estimate the azimuthal source distribution to determine the bias, we perform inversions of amplitudes of cross-correlation envelopes in a number of period ranges. Then, we invert the measured and bias-corrected dispersion curves for phase-velocity maps at periods between 3 and 30 s. In addition, we investigate the effects of phase-velocity bias corrections on the inverted tomographic maps. The difference between bias corrected and uncorrected phase-velocity maps is small ($< 1.2 \%$), but the correction significantly reduces the residual data variance at long periods where the bias is biggest. To obtain a shear velocity model, we invert for a one-dimensional velocity profile at each geographical node. The results show some correlation with surface geology, regional seismicity and gravity anomalies in the upper crust. Below the upper crust, the results agree well with results from other seismological methods.


Author(s):  
Shichuan Yuan ◽  
Zhenguo Zhang ◽  
Hengxin Ren ◽  
Wei Zhang ◽  
Xianhai Song ◽  
...  

ABSTRACT In this study, the characteristics of Love waves in viscoelastic vertical transversely isotropic layered media are investigated by finite-difference numerical modeling. The accuracy of the modeling scheme is tested against the theoretical seismograms of isotropic-elastic and isotropic-viscoelastic media. The correctness of the modeling results is verified by the theoretical phase-velocity dispersion curves of Love waves in isotropic or anisotropic elastic or viscoelastic media. In two-layer half-space models, the effects of velocity anisotropy, viscoelasticity, and attenuation anisotropy of media on Love waves are studied in detail by comparing the modeling results obtained for anisotropic-elastic, isotropic-viscoelastic, and anisotropic-viscoelastic media with those obtained for isotropic-elastic media. Then, Love waves in three typical four-layer half-space models are simulated to further analyze the characteristics of Love waves in anisotropic-viscoelastic layered media. The results show that Love waves propagating in anisotropic-viscoelastic media are affected by both the anisotropy and viscoelasticity of media. The velocity anisotropy of media causes substantial changes in the values and distribution range of phase velocities of Love waves. The viscoelasticity of media leads to the amplitude attenuation and phase velocity dispersion of Love waves, and these effects increase with decreasing quality factors. The attenuation anisotropy of media indicates that the viscoelasticity degree of media is direction dependent. Comparisons of phase velocity ratios suggest that the change degree of Love-wave phase velocities due to viscoelasticity is much less than that caused by velocity anisotropy.


2018 ◽  
Vol 123 (2) ◽  
pp. 1770-1792 ◽  
Author(s):  
Emanuel D. Kästle ◽  
A. El-Sharkawy ◽  
L. Boschi ◽  
T. Meier ◽  
C. Rosenberg ◽  
...  

2019 ◽  
Vol 109 (5) ◽  
pp. 1716-1728
Author(s):  
Rhys Hawkins ◽  
Malcolm Sambridge

Abstract A method of extracting group and phase velocity dispersions jointly for Love‐ and Rayleigh‐wave observations is presented. This method uses a spectral element representation of a path average Earth model parameterized with density, shear‐wave velocity, radial anisotropy, and VP/VS ratio. An initial dispersion curve is automatically estimated using a heuristic approach to prevent misidentification of the phase. A second step then more accurately fits the observed noise correlation function (NCF) between interstation pairs in the frequency domain. For good quality cross correlations with reasonable signal‐to‐noise ratio, we are able to very accurately fit the spectrum of NCFs and hence obtain reliable estimates of both phase and group velocity jointly for Love and Rayleigh surface waves. In addition, we also show how uncertainties can be estimated with linearized approximations from the Jacobians and subsequently used in tomographic inversions.


1968 ◽  
Vol 58 (3) ◽  
pp. 1021-1034 ◽  
Author(s):  
S. Bloch ◽  
A. L. Hales

abstract A number of new techniques have been developed for the determination of phase velocities from the digitized seismograms from pairs of stations. One of these techniques is to Fourier analyze the sum (or difference) of the two seismograms after time shifting in steps to correspond to steps in phase velocity. The amplitude of the summed seismogram is a maximum for any particular period when both seismograms are in phase at that period. Another method is to pass both seismograms through a narrow bandpass digital filter centered at various periods and form the cross product of the filtered seismograms, after time shifting. The average of the resultant time series is a maximum when the two signals are in phase. The computer output is a matrix consisting of amplitudes or averages as a function of phase velocity and period. The phase velocity dispersion is determined from the contoured matrix. Using these techniques, interstation phase velocities of Rayleigh waves have been determined for the “World Wide Network Standard Stations” at Pretoria, Bulawayo and Windhoek. The method using cross-products is the most efficient.


Sign in / Sign up

Export Citation Format

Share Document