PolarGUI: A MATLAB-Based Tool for Polarization Analysis of the Three-Component Seismic Data Using Different Algorithms

Author(s):  
Huailiang Li ◽  
Kai Qu ◽  
Wenzheng Rong ◽  
Xianguo Tuo ◽  
Jing Lu ◽  
...  

Abstract We present an open-source and MATLAB-based tool with an easy-to-use graphical user interface (GUI) consisting of four polarization analysis approaches: the particle-motion trajectory (a hodogram in a 3D plane), eigenvalue decomposition (EVD) based on the covariance matrix (including two calculation methods), singular value decomposition using principal component analysis, and EVD based on a constructed analytic signal matrix (EVD-ASM). We review the calculation processes and features of the four cited methods. The eigenvalue and eigenvector are applied to obtain the polarization attributes of the three-component (3C) seismic data. Using rose graphs and histograms, the corresponding azimuth and incidence angle are calculated to determine the propagation direction of the seismic wave. Statistical distribution curves of the corresponding rectilinearity and planarity of the waves are also plotted. The polarization analysis GUI can simultaneously analyze two selected data sections in a seismic recording corresponding to P and S waves. We evaluate the performance of these algorithms using real 3C earthquake datasets. Comparison tests indicate that the aforementioned four methods have different time consumption, and the differences between the results of the EVD-ASM and those of the other methods are very small.

2021 ◽  
Vol 11 (11) ◽  
pp. 4874
Author(s):  
Milan Brankovic ◽  
Eduardo Gildin ◽  
Richard L. Gibson ◽  
Mark E. Everett

Seismic data provides integral information in geophysical exploration, for locating hydrocarbon rich areas as well as for fracture monitoring during well stimulation. Because of its high frequency acquisition rate and dense spatial sampling, distributed acoustic sensing (DAS) has seen increasing application in microseimic monitoring. Given large volumes of data to be analyzed in real-time and impractical memory and storage requirements, fast compression and accurate interpretation methods are necessary for real-time monitoring campaigns using DAS. In response to the developments in data acquisition, we have created shifted-matrix decomposition (SMD) to compress seismic data by storing it into pairs of singular vectors coupled with shift vectors. This is achieved by shifting the columns of a matrix of seismic data before applying singular value decomposition (SVD) to it to extract a pair of singular vectors. The purpose of SMD is data denoising as well as compression, as reconstructing seismic data from its compressed form creates a denoised version of the original data. By analyzing the data in its compressed form, we can also run signal detection and velocity estimation analysis. Therefore, the developed algorithm can simultaneously compress and denoise seismic data while also analyzing compressed data to estimate signal presence and wave velocities. To show its efficiency, we compare SMD to local SVD and structure-oriented SVD, which are similar SVD-based methods used only for denoising seismic data. While the development of SMD is motivated by the increasing use of DAS, SMD can be applied to any seismic data obtained from a large number of receivers. For example, here we present initial applications of SMD to readily available marine seismic data.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Kanokmon Rujirakul ◽  
Chakchai So-In ◽  
Banchar Arnonkijpanich

Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages’ complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 166
Author(s):  
Majed Aljunaid ◽  
Yang Tao ◽  
Hongbo Shi

Partial least squares (PLS) and linear regression methods are widely utilized for quality-related fault detection in industrial processes. Standard PLS decomposes the process variables into principal and residual parts. However, as the principal part still contains many components unrelated to quality, if these components were not removed it could cause many false alarms. Besides, although these components do not affect product quality, they have a great impact on process safety and information about other faults. Removing and discarding these components will lead to a reduction in the detection rate of faults, unrelated to quality. To overcome the drawbacks of Standard PLS, a novel method, MI-PLS (mutual information PLS), is proposed in this paper. The proposed MI-PLS algorithm utilizes mutual information to divide the process variables into selected and residual components, and then uses singular value decomposition (SVD) to further decompose the selected part into quality-related and quality-unrelated components, subsequently constructing quality-related monitoring statistics. To ensure that there is no information loss and that the proposed MI-PLS can be used in quality-related and quality-unrelated fault detection, a principal component analysis (PCA) model is performed on the residual component to obtain its score matrix, which is combined with the quality-unrelated part to obtain the total quality-unrelated monitoring statistics. Finally, the proposed method is applied on a numerical example and Tennessee Eastman process. The proposed MI-PLS has a lower computational load and more robust performance compared with T-PLS and PCR.


1996 ◽  
Vol 86 (1A) ◽  
pp. 221-231 ◽  
Author(s):  
Gregory S. Wagner ◽  
Thomas J. Owens

Abstract We outline a simple signal detection approach for multi-channel seismic data. Our approach is based on the premise that the wave-field spatial coherence increases when a signal is present. A measure of spatial coherence is provided by the largest eigenvalue of the multi-channel data's sample covariance matrix. The primary advantages of this approach are its speed and simplicity. For three-component data, this approach provides a more robust statistic than particle motion polarization. For array data, this approach provides beamforming-like signal detection results without the need to form beams. This approach allows several options for the use of three-component array data. Detection statistics for three-component, vertical-component array, and three different three-component array approaches are compared to conventional and minimum-variance vertical-component beamforming. Problems inherent in principal-component analysis (PCA) in general and PCA of high-frequency seismic data in particular are also discussed. Multi-channel beamforming and the differences between principal component and factor analysis are discussed in the appendix.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1223-1238 ◽  
Author(s):  
John T. Kuo ◽  
Ting‐fan Dai

In taking into account both compressional (P) and shear (S) waves, more geologic information can likely be extracted from the seismic data. The presence of shear and converted shear waves in both land and marine seismic data recordings calls for the development of elastic wave‐migration methods. The migration method presently developed consists of simultaneous migration of P- and S-waves for offset seismic data based on the Kirchhoff‐Helmholtz type integrals for elastic waves. A new principle of simultaneously migrating both P- and S-waves is introduced. The present method, named the Kirchhoff elastic wave migration, has been tested using the 2-D synthetic surface data calculated from several elastic models of a dipping layer (including a horizontal layer), a composite dipping and horizontal layer, and two layers over a half‐space. The results of these tests not only assure the feasibility of this migration scheme, but also demonstrate that enhanced images in the migrated sections are well formed. Moreover, the signal‐to‐noise ratio increases in the migrated seismic section by this elastic wave migration, as compared with that using the Kirchhoff acoustic (P-) wave migration alone. This migration scheme has about the same order of sensitivity of migration velocity variations, if [Formula: see text] and [Formula: see text] vary concordantly, to the recovery of the reflector as that of the Kirchhoff acoustic (P-) wave migration. In addition, the sensitivity of image quality to the perturbation of [Formula: see text] has also been tested by varying either [Formula: see text] or [Formula: see text]. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are virtually unaffected on the [Formula: see text] depth section while they are affected on the [Formula: see text] depth section. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are affected on both the [Formula: see text] and [Formula: see text] depth sections.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
Dawei Liu ◽  
Lei Gao ◽  
Xiaokai Wang ◽  
wenchao Chen

Acquisition footprint causes serious interference with seismic attribute analysis, which severely hinders accurate reservoir characterization. Therefore, acquisition footprint suppression has become increasingly important in industry and academia. In this work, we assume that the time slice of 3D post-stack migration seismic data mainly comprises two components, i.e., useful signals and acquisition footprint. Useful signals describe the spatial distributions of geological structures with local piecewise smooth morphological features. However, acquisition footprint often behaves as periodic artifacts in the time-slice domain. In particular, the local morphological features of the acquisition footprint in the marine seismic acquisition appear as stripes. As useful signals and acquisition footprint have different morphological features, we can train an adaptive dictionary and divide the atoms of the dictionary into two sub-dictionaries to reconstruct these two components. We propose an adaptive dictionary learning method for acquisition footprint suppression in the time slice of 3D post-stack migration seismic data. To obtain an adaptive dictionary, we use the K-singular value decomposition algorithm to sparsely represent the patches in the time slice of 3D post-stack migration seismic data. Each atom of the trained dictionary represents certain local morphological features of the time slice. According to the difference in the variation level between the horizontal and vertical directions, the atoms of the trained dictionary are divided into two types. One type significantly represents the local morphological features of the acquisition footprint, whereas the other type represents the local morphological features of useful signals. Then, these two components are reconstructed using morphological component analysis based on different types of atoms, respectively. Synthetic and field data examples indicate that the proposed method can effectively suppress the acquisition footprint with fidelity to the original data.


Geophysics ◽  
2021 ◽  
pp. 1-86
Author(s):  
Wei Chen ◽  
Omar M. Saad ◽  
Yapo Abolé Serge Innocent Oboué ◽  
Liuqing Yang ◽  
Yangkang Chen

Most traditional seismic denoising algorithms will cause damages to useful signals, which are visible from the removed noise profiles and are known as signal leakage. The local signal-and-noise orthogonalization method is an effective method for retrieving the leaked signals from the removed noise. Retrieving leaked signals while rejecting the noise is compromised by the smoothing radius parameter in the local orthogonalization method. It is not convenient to adjust the smoothing radius because it is a global parameter while the seismic data is highly variable locally. To retrieve the leaked signals adaptively, we propose a new dictionary learning method. Because of the patch-based nature of the dictionary learning method, it can adapt to the local feature of seismic data. We train a dictionary of atoms that represent the features of the useful signals from the initially denoised data. Based on the learned features, we retrieve the weak leaked signals from the noise via a sparse co ding step. Considering the large computational cost when training a dictionary from high-dimensional seismic data, we leverage a fast dictionary up dating algorithm, where the singular value decomposition (SVD) is replaced via the algebraic mean to update the dictionary atom. We test the performance of the proposed method on several synthetic and field data examples, and compare it with that from the state-of-the-art local orthogonalization method.


Sign in / Sign up

Export Citation Format

Share Document