Six Decades of Seismology at South Pole, Antarctica: Current Limitations and Future Opportunities to Facilitate New Geophysical Observations

Author(s):  
Robert E. Anthony ◽  
Adam T. Ringler ◽  
Michael DuVernois ◽  
Kent R. Anderson ◽  
David C. Wilson

Abstract Seismograms from the South Pole have been important for seismological observations for over six decades by providing (until 2007) the only continuous seismic records from the interior of the Antarctic continent. The South Pole, Antarctica station has undergone many updates over the years, including conversion to a digital recording station as part of the Global Seismographic Network (GSN) in 1991 and being relocated to multiple deep (>250  m) boreholes 8 km away from the station in 2003 (and renamed to Quiet South Pole, Antarctica [QSPA]). Notably, QSPA is the second most used GSN station by the National Earthquake Information Center to pick phases used to rapidly detect and locate earthquakes globally, and has been used for a variety of glaciological and oceanography studies. In addition, it is the only seismic station on the Earth where low-frequency (<5  mHz), normal-mode oscillations of the planet excited by large earthquakes can be recorded without influence from Earth’s rotation, and most of the direct effects of the solid Earth tide vanish. However, the current sensors are largely 1980s vintage, and, while able to make some lower-frequency observations from earthquakes, the borehole sensors appear unable to resolve ambient ground motions at frequencies lower than 25 mHz due to instrument noise and contamination from magnetic field variations. Recently developed borehole sensors offer the potential to extend background noise observations to below 3 mHz, which would substantially improve the fidelity and scientific value of seismic observations at South Pole. Through collaboration with the IceCube Neutrino Observatory, the opportunity exists to emplace a modern very broadband seismometer near the base (>2  km depth) of the Antarctic ice cap, which could lead to unprecedented seismic observations at long periods and facilitate a broad spectrum of Earth science studies.

Author(s):  
Paolo Bernat

100 years ago, Antarctica was still mostly unknown and unexplored. The first landings on the Antarctic coast took place in the early decades of the nineteenth century and were made by whalers and sealers. In the following years the first scientific expeditions began and European and US expeditions started the geographical discovery and the mapping of the Antarctic coasts. But it was only in the years 1911-1912 that two expeditions, very different but equally well prepared, arrived almost simultaneously at the South Pole. The events that happened in the Antarctic together with the different nature of the two leaders Roald Amundsen and Robert Scott determined the outcome of these expeditions and the fate of their teams. The centenary of the conquest of the South Pole (December 14, 1911) is an opportunity to remember the passion for science, the spirit of adventure and the fierce perseverance that characterized those extraordinary men and that even now form the basis of scientific research and of human progress, not only in Antarctica but in all areas of knowledge and life.


Author(s):  
David Beerling

By arriving at the South Pole on 14 December 1911, the Norwegian explorer Roald Amundsen (1872–1928) reached his destination over a month ahead of the British effort led by Captain Robert Falcon Scott (1868–1912). As Scott’s party approached the South Pole on 17 January 1912, they were devastated to see from afar the Norwegian’s black flag. On arrival, they discovered the remains of his camp with ski and sledge tracks, and numerous dog footprints. Amundsen, it turned out, had used dogs and diversionary tactics to secure victory while the British team had man-hauled their sledges. These differences were not lost on The Times in London, which marked the achievement with muted praise, declaring it ‘not quite in accordance with the spirit of fair and open competition which hitherto marked Antarctic exploration’. Exhausted, Scott and his men spent time the following day making scientific observations around the Pole, erected ‘our poor slighted Union Jack’, and photographed themselves in front of it (Plate 11). Lieutenant Bowers took the picture by pulling a string to activate the shutter. It is perhaps the most well known, and at the same time the saddest picture, of the entire expedition—a poignant image of the doomed party, all of whom look utterly fed up as if somehow sensing the fate awaiting them. The cold weather, icy wind, and dismal circumstances led Scott to acerbically remark in his diary: ‘Great god! This is an awful place and terrible enough to have laboured to it without the reward of priority.’ By this time, the party had been hauling their sledges for weeks, and all the men were suffering from dehydration, owing to fatigue and altitude sickness from being on the Antarctic plateau that sits nearly 3000m above sea level. Three of them, Captain Oates, Seaman Evans, and Bowers, were badly afflicted with frostbitten noses and cheeks. Ahead lay the return leg, made all the more unbearable by the crippling psychological blow of knowing they had been second to the Pole. After a gruelling 21-day trek in bitterly cold summit winds, the team reached their first cache of food and fuel, covering the distance six days faster than it had taken them to do the leg in the other direction.


2002 ◽  
Vol 19 (3) ◽  
pp. 328-336 ◽  
Author(s):  
J. S. Lawrence ◽  
M. C. B. Ashley ◽  
M. G. Burton ◽  
P. G. Calisse ◽  
J. R. Everett ◽  
...  

AbstractThe near infrared sky spectral brightness has been measured at the South Pole with the Near Infrared Sky Monitor (NISM) throughout the 2001 winter season. The sky is found to be typically more than an order of magnitude darker than at temperate latitude sites, consistent with previous South Pole observations. Reliable robotic operation of the NISM, a low power, autonomous instrument, has been demonstrated throughout the Antarctic winter. Data analysis yields a median winter value of the 2.4μm (Kdark) sky spectral brightness of ˜120μJy arcsec−2 and an average of 210 ± 80μJy arcsec−2. The 75%, 50%, and 25% quartile values are 270 ± 100, 155 ± 60, and 80 ± 30μJy arcsec−2, respectively.


2012 ◽  
Vol 20 (4) ◽  
pp. 169-172 ◽  
Author(s):  
Kevin Brown

Dr Edward Wilson was a polar explorer who accompanied Robert Falcon Scott (1868–1912) on his expeditions to Antarctica in 1900 and 1910. He went with Scott to the South Pole and died with him on the return journey in 1912. Although medically qualified, he is now remembered more as a naturalist and as a talented artist recording the Antarctic expeditions.


2004 ◽  
Vol 21 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Paolo G. Calisse ◽  
Michael C. B. Ashley ◽  
Michael G. Burton ◽  
Michael A. Phillips ◽  
John W. V. Storey ◽  
...  

AbstractWe have developed a 350 μm radiometer to perform automated site testing in remote regions of Antarctica. In summer 2000–2001 the instrument operated at Concordia, a new station under construction at Dome C on the Antarctic Plateau. We present the results, and compare them with the atmospheric opacity measured at the South Pole in the same five-week period. During these five weeks, observing conditions at Dome C were, on average, substantially better than those at the South Pole.


2020 ◽  
Vol 91 (5) ◽  
pp. 2936-2941
Author(s):  
Xiaofeng Liang ◽  
Sicheng Zuo ◽  
Shilin Li ◽  
Yongge Feng

Abstract A temporary seismometer vault was buried by a moving sand dune in the Taklimakan Desert at northwestern China in October 2019. The dune gradually covered the solar panel and the power supply to the seismic station was subsequently cut off. Here, we show that the burial process can be diagnosed according to the temperature record from the thermometer in the data-logger, an ultra-low-frequency seismic signal, and the change of high-frequency noise level from the continuous seismograms recorded by the broadband seismometer. The ultra-low-frequency seismic signal reflects the thermoelastic effect of the suspension spring in the seismometer corresponding to the temperature gradient in the sensor vault. At the same time, the variation of high-frequency noise level correlates well with the temperature profile and the ultra-low-frequency seismic signal, indicating the ground wind intensity. The peak frequency shifts and their different responses on three-component waveforms for the high-frequency noise might reflect the distance from the moving dunes to the station and their moving directions. This observation shows a potential usage of continuous seismograms to study rapid environment change around a temporary seismic station.


Polar Record ◽  
1988 ◽  
Vol 24 (151) ◽  
pp. 313-316 ◽  
Author(s):  
Charles Swithinbank

AbstractAntarctic Airways, an independent commercial airline, operated one DC-4 and two Twin Otter aircraft during the 1987–88 summer season. The DC-4 made twelve direct flights between Punta Arenas, Chile, and the Ellsworth Mountains. The Twin Otters were used for onward flights to destinations including the South Pole. The significance of this development is that scientists from countries that do not have ships or bases in the Antarctic can now work on the continent without either.


Sign in / Sign up

Export Citation Format

Share Document