Recent developments in strong-motion analysis*

1955 ◽  
Vol 45 (1) ◽  
pp. 11-21 ◽  
Author(s):  
John Hershberger

Abstract The integration of acceleration records as performed by the U. S. Coast and Geodetic Survey to produce velocity and displacement curves has nearly always required the use of arbitrary “adjustments,” in addition to the three legitimate adjustments involved in fixing the two constants of integration and the acceleration axis. These additional adjustments were justified on the assumption of accelerometer zero shifts. An improved accelerometer eliminated the possibility of zero shifts, thereby preventing the continued use of the former adjustments. Since then acceptable integration results have not been obtainable, except only for short periods of ground motion. The Carder displacement meter has thoroughly proved its superiority over integration as a means for obtaining displacement information of general engineering significance, and is being increasingly used for this purpose.

2018 ◽  
Vol 18 (3) ◽  
pp. 152-160
Author(s):  
Yuliastuti Yuliastuti ◽  
Euis Etty A ◽  
Topan Setiadipura

A thorough understanding of an earthquake is very important to provide a descriptive knowledge and in the same time as a prescriptive knowledge for the future development. In particular, it is essential for site selection and structural design development of nuclear reactor and other critical facilities. Ground motion acceleration time history is an important raw information to understand the earthquake and specific geological condition of where the data is recorded. This paper presented the development of strong-motion analysis code, called Winston-BATAN, which able to interpret ground motion time history. The analysis scope of the code including the ground motion parameters such as peak ground acceleration, several additional seismic intensity parameters, strong motion duration, its frequency content via Fast Fourier Transformation and response spectra analysis. Being developed based on an open source Python programming language, Winston-BATAN is flexible for exploratory study to exploit the ground motion time history and easily improve to accommodate additional features. This code able to read input from PEER NGA type file or a simple time and acceleration data type of ground motion. Analysis results of Winston-BATAN shows a very good agreement compare to the results from the standard tools Seismosignal® 2018 Software, in addition flexibility of this code, in particular, to explore the response spectra from the ground motion time history is demonstrated.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


Author(s):  
Fabio Sabetta ◽  
Antonio Pugliese ◽  
Gabriele Fiorentino ◽  
Giovanni Lanzano ◽  
Lucia Luzi

AbstractThis work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 503
Author(s):  
Lucia Nardone ◽  
Fabrizio Terenzio Gizzi ◽  
Rosalba Maresca

Cultural heritage represents our legacy with the past and our identity. However, to assure heritage can be passed on to future generations, it is required to put into the field knowledge as well as preventive and safeguard actions, especially for heritage located in seismic hazard-prone areas. With this in mind, the article deals with the analysis of ground response in the Avellino town (Campania, Southern Italy) and its correlation with the effects caused by the 23rd November 1980 Irpinia earthquake on the historical buildings. The aim is to get some clues about the earthquake damage cause-effect relationship. To estimate the ground motion response for Avellino, where strong-motion recordings are not available, we made use of the seismic hazard disaggregation. Then, we made extensive use of borehole data to build the lithological model so being able to assess the seismic ground response. Overall, results indicate that the complex subsoil layers influence the ground motion, particularly in the lowest period (0.1–0.5 s). The comparison with the observed damage of the selected historical buildings and the maximum acceleration expected indicates that the damage distribution cannot be explained by the surface geology effects alone.


2002 ◽  
Vol 18 (1) ◽  
pp. 1-17 ◽  
Author(s):  
K. Anastassiadis ◽  
I. E. Avramidis ◽  
P. Panetsos

According to the model of Penzien and Watabe, the three translational ground motion components on a specific point of the ground are statistically noncorrelated along a well-defined orthogonal system of axes p, w, and v, whose orientation remains reasonably stable over time during the strong motion phase of an earthquake. This orthotropic ground motion is described by three generally independent response spectra Sa, Sb, and Sc, respectively. The paper presents an antiseismic design procedure for structures according to the above seismic motion model. This design includes a) determination of the critical orientation of the seismic input, i.e., the orientation that gives the largest response, b) calculation of the maximum and the minimum values of any response quantity, and c) application of either the Extreme Stress Method or the Extreme Force Method for determining the most unfavorable combinations of several stress resultants (or sectional forces) acting concurrently at a specified section of a structural member.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


1964 ◽  
Vol 54 (6A) ◽  
pp. 2087-2098
Author(s):  
V. A. Jenschke ◽  
J. Penzien

abstract Due to inertial and damping characteristics of strong motion seismographs, recorded ground motion accelerograms may in some cases be sufficiently in error to significantly affect the results obtained when generating standard response or Fourier spectra. Therefore, the objectives of this paper are to present an analytical method of generating standard spectra which will eliminate the above instrumental error and to show the significance of this error by presenting some sample results obtained from accelerograms representing both earthquakes and underground nuclear explosions.


Sign in / Sign up

Export Citation Format

Share Document