Torsional response of structures for SH waves: The case of hemispherical foundations

1976 ◽  
Vol 66 (1) ◽  
pp. 109-123
Author(s):  
J. E. Luco

abstract A study is made of the harmonic torsional response of an elastic structure placed on a rigid hemispherical foundation which is supported on an elastic medium and is subjected to the action of obliquely incident plane SH waves. As a basic step in the solution of the torsion interaction problem, a closed-form solution is obtained for the torsional response of a rigid hemispherical foundation excited externally by a harmonic torque and through the soil by an obliquely incident plane SH wave. Comparisons between the results for a hemispherical foundation with those for a circular plate allow the estimation of the effects that the embedment of the foundation has on the torsional response of the superstructure.

1972 ◽  
Vol 62 (1) ◽  
pp. 63-83
Author(s):  
M. D. Trifunac

Abstract The closed-form solution of the dynamic interaction of a shear wall and the isotropic homogeneous and elastic half-space, previously studied only for vertically-incident SH waves, is generalized to any angle of incidence. It is shown that the interaction equation is independent of the incidence angle, while the surface-ground displacements heavily depend on it. For the two-dimensional model studied, it is demonstrated that disturbances generated by waves scattering and diffracting around the rigid foundation mass are not a local phenomenon but extend to large distances relative to the characteristic foundation length.


Author(s):  
Abdul Hayir ◽  
Sinan Emre Cankaya

The spectral analysis of strong earthquake ground motion needs detailed understanding of transfer function properties and source radiation along the wave propagation path. The main goal of this study is to evaluate the interaction of two semi-cylindrical canyons, which are subjected to the horizontally polarized shear-wave (SH-wave) and to find the transfer function properties of two canyons. In this study, the interaction of two semi-cylindrical canyons subjected to SH waves are considered and evaluated for a general angle of wave incidence. The method of Wave Function Expansion is derived, and the infinite series solution is obtained. Due to the complexity and convergence of infinite series including Bessel functions, the numerical results are limited. The convergence of the solution for the high frequencies requires the high order term. Moreover, the difficulties of this study come from convergence of the solution owing to interaction of two canyons having various dimensions and material properties. The closed-form solution of the problem shows that the surface topography can have prominent effects on incident waves when the wavelengths of incident motion are short compared to the radius of a canyon. The parameters, dimensions of the canyons, distance between two canyons, and the amplifications of the displacement amplitudes are obtained with respect to the incident angles of the waves and dimensionless frequency.


1977 ◽  
Vol 5 (2) ◽  
pp. 107-129 ◽  
Author(s):  
A. M. Abdel-Ghaffar ◽  
M. D. Trifunac

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771770 ◽  
Author(s):  
Jiangcheng Zhu ◽  
Jun Zhu ◽  
Chao Xu

This article proposes a trajectory generator for quadcopter to intercept moving ground vehicle. For this air–ground interaction problem, we formulate the trajectory generation problem as quadratic dynamic programming in a moving-horizon scheme based on the quadcopter kinematics and observation to ground vehicle. The closed-form solution of quadratic dynamic programming in each iteration enables this algorithm a real-time replanning performance. Thereafter, segmented trajectory rule, inspired from commercial flight landing regular, is implemented to guarantee smoothness in approaching and interception to moving ground target from comparably far origin. Our established algorithm is verified through both simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document