A new procedure for processing strong-motion earthquake signals

1982 ◽  
Vol 72 (2) ◽  
pp. 643-661
Author(s):  
S. Shyam Sunder ◽  
Jerome J. Connor

Abstract A new procedure for routinely processing strong-motion earthquake signals using state-of-the-art filter design and implementation techniques is presented. The model, shown to be both accuratet and efficient, is sufficiently flexible so that the signal sampling period and filter parameters can be easily varied. A comparison of results from the existing United States model (Trifunac and Lee, 1973) and the proposed model show significant differences in the ground motion and response spectrum characteristics for the same set of filter limits. Drifts in integrated velocity and displacement characteristics and theoretically incorrect asymptotic behavior of response spectrum curves arising out of the existing United States processing scheme have been eliminated. In addition to the importance of appropriately selecting a low-frequency limit for band-pass filtering the signals, this work demonstrates the sensitivity of the acceleration trace to the particular choice of a high-frequency limit.

2020 ◽  
Author(s):  
Maria D'Amico ◽  
Erika Schiappapietra ◽  
Giovanni Lanzano ◽  
Sara Sgobba ◽  
Francesca Pacor

<p>We present a processing scheme (eBASCO, extended BASeline COrrection) to remove the baseline of strong-motion records by means of a piece-wise linear de-trending of the velocity time history. Differently from standard processing schemes, eBASCO does not apply any filtering to remove the low-frequency content of the signal. This approach preserves both the long-period near-source ground-motion, featured by one-side pulse in the velocity trace, and the offset at the end of the displacement trace (fling-step). Hence, the software is suitable for the identification of fling-containing strong-motion waveforms. Here, we apply eBASCO to reconstruct the ground displacement of more than 400 three-component near-source waveforms recorded worldwide (NESS1, http://ness.mi.ingv.it/; Pacor et al., 2019) with the aim of: 1) extensively testing the eBasco capability to capture the long-period content of near-source records; 2) calibrating attenuation models for peak ground displacement (PGD), 5% damped displacement response spectra (DS), permanent displacement amplitude (PD) and period (Tp). The results could provide a more accurate estimate of ground motions, to be adopted for different engineering purposes such as performance-based seismic design of structures.</p><p>Pacor F., Felicetta C., Lanzano G., Sgobba S., Puglia R., D’Amico M., Russo E., Baltzopoulos G., Iervolino I. (2018). NESS v1.0: A worldwide collection of strong-motion data to investigate near source effects. Seismological Research Letters. https://doi.org/10.1785/0220180149</p>


Author(s):  
Paul S. Earle ◽  
Harley M. Benz ◽  
William L. Yeck ◽  
Gavin P. Hayes ◽  
Michelle R. Guy ◽  
...  

Abstract Over the past two decades, the U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) has overcome many operational challenges. These range from minor disruptions, such as power outages, to significant operational changes, including system reconfiguration to handle unique earthquake sequences and the need to handle distributed work during a pandemic. Our ability to overcome crises is built on the development and implementation of a continuity of operations plan, well-designed infrastructure, adaptive software systems, experienced staff, and extensive collaboration. The NEIC does not operate in a vacuum but benefits from contributions of United States and international seismic networks. Similarly, the overall resilience of earthquake monitoring in the United States and around the globe benefits from the NEIC’s role as the national center for the Advanced National Seismic System (ANSS). Here, we highlight significant adaptations the NEIC has made in the face of crises. We discuss the COVID-19 pandemic, which represents the most significant operational crisis to impact the NEIC. The NEIC has maintained continuous operations during the ongoing COVID-19 pandemic by shifting from a fully onsite operations center to a distributed hybrid of onsite and telework staffing. We then discuss cases in which the NEIC has supported regional monitoring in the face of significant crises. In 2018, the NEIC assisted the Hawaiian Volcano Observatory with the Kīlauea volcano eruption by responding to large events, implementing contingency monitoring procedures, and calculating moment magnitudes for the low-frequency caldera collapses. Impacts of a crisis extend beyond the immediate response and often require a significant postevent assessment and a rebuilding phase. After the 2017 Hurricane Maria, the NEIC, the USGS National Strong-Motion Program, and the USGS Albuquerque Seismological Laboratory worked with the Puerto Rico Seismic Network and the Puerto Rico Strong-Motion program to assess, plan, and implement upgrades at sites that experienced storm damage.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 67
Author(s):  
Erika Schiappapietra ◽  
Chiara Felicetta ◽  
Maria D’Amico

We present an upgraded processing scheme (eBASCO, extended BASeline COrrection) to remove the baseline of strong-motion records by means of a piece-wise linear detrending of the velocity time history. Differently from standard processing schemes, eBASCO does not apply any filtering to remove the low-frequency content of the signal. This approach preserves both the long-period near-source ground-motion, featured by one-side pulse in the velocity trace, and the offset at the end of the displacement trace (fling-step). The software is suitable for a rapid identification of fling-containing waveforms within large strong-motion datasets. The ground displacement of about 600 three-component near-source waveforms has been recovered with the aim of (1) extensively testing the eBASCO capability to capture the long-period content of near-source records, and (2) compiling a qualified strong-motion flat-file useful to calibrate attenuation models for peak ground displacement (PGD), 5% damped displacement response spectra (DS), and permanent displacement amplitude (PD). The results provide a more accurate estimate of ground motions that can be adopted for different engineering purposes, such as performance-based seismic design of structures.


Geophysics ◽  
1983 ◽  
Vol 48 (9) ◽  
pp. 1258-1268 ◽  
Author(s):  
A. E. Bussian

The Hanai‐Bruggeman equation is applied to a model of a conductive rock matrix immersed in water. The result is a general two‐component equation which relates the electrical properties of a formation to the electrical properties of the rock matrix and the water at any frequency. The low‐frequency limit is compared with previous theoretical and experimental work on sand formations. From a comparison of the three‐resistor model of Wyllie and Southwick, the Waxman‐Smits model, the dual water model of Clavier et al (1977) and the proposed model, it is found that the only representation which is viable, conceptually sound, and in agreement with experiment, is the last one.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Author(s):  
Chao-Yaug Liao ◽  
Jean-Claude Léon ◽  
Cédric Masclet ◽  
Michel Bouriau ◽  
Patrice L. Baldeck ◽  
...  

Based on the two-photon polymerization technique, an analysis of product shapes is performed so that their digital manufacturing models can be efficiently processed for micromanufacture. To describe microstructures, this analysis shows that nonmanifold models are of interest. These models can be intuitively understood as combinations of wires, surfaces, and volumes. Minimum acceptable wall thickness, wire dimension, and laser density of energy are among the elements justifying this category of models. Taking into account this requirement, a model preparation and processing scheme is proposed that widens the laser beam trajectories with a concept of extended layer manufacturing technique. A tessellation process suited for non-manifold models has been developed for computer-aided design models imported from standard for the exchange of product files. After tessellation, several polyhedral subdomains form a nonmanifold polyhedron. To plan the trajectories of the laser beam, adaptive slicing and global 3D hatching processes as well as a “welding” process (for joining subdomains of different dimensionality) have been combined. Finally, two nonmanifold microstructures are fabricated according to the proposed model preparation and processing scheme.


2012 ◽  
Vol 1404 ◽  
Author(s):  
A.A. Maznev

ABSTRACTThe onset of size effects in phonon-mediated thermal transport along a thin film at temperatures comparable or greater than the Debye temperature is analyzed theoretically. Assuming a quadratic frequency dependence of phonon relaxation rates in the low-frequency limit, a simple closed-form formula for the reduction of the in-plane thermal conductivity of thin films is derived. The effect scales as the square root of the film thickness, which leads to the prediction of measurable size-effects even at “macroscopic” distances ~100 μm. However, this prediction needs to be corrected to account for the deviation from the ω−2 dependence of phonon lifetimes at sub-THz frequencies due to the transition from Landau-Rumer to Akhiezer mechanism of phonon dissipation.


Sign in / Sign up

Export Citation Format

Share Document