Retrieval of source-extent parameters and the interpretation of corner frequency

1983 ◽  
Vol 73 (6A) ◽  
pp. 1499-1511
Author(s):  
Paul Silver

Abstract A method is proposed for retrieving source-extent parameters from far-field body-wave data. At low frequency, the normalized P- or S-wave displacement amplitude spectrum can be approximated by |Ω^(r^,ω)| = 1 − τ2(r^)ω2/2 where r^ specifies a point on the focal sphere. For planar dislocation sources, τ2(r^) is linearly related to statistical measures of source dimension, source duration, and directivity. τ2(r^) can be measured as the curvature of |Ω^(r^,ω)| at ω = 0 or the variance of the pulse Ω^(r^,t). The quantity ωc=2τ−1(r^) is contrasted with the traditional corner frequency ω0, defined as the frequency at the intersection of the low- and high-frequency trends of |Ω^(r^,ω)|. For dislocation models without directivity, ωc(P) ≧ ωc(S) for any r^. A mean corner frequency defined by averaging τ2(r^) over the focal sphere, ω¯c=2<τ2(r^)>−1/2, satisfies ωc(P) > ωc(S) for any dislocation source. This behavior is not shared by ω0. It is shown that ω0 is most sensitive to critical times in the rupture history of the source, whereas ωc is determined by the basic parameters of source extent. Evidence is presented that ωc is the corner frequency measured on actual seismograms. Thus, the commonly observed corner frequency shift (P-wave corner greater than the S-wave corner), now viewed as a shift in ωc is simply a result of spatial finiteness and is expected to be a property of any dislocation source. As a result, the shift cannot be used as a criterion for rejecting particular dislocation models.

1984 ◽  
Vol 74 (2) ◽  
pp. 361-376
Author(s):  
John Boatwright ◽  
Jon B. Fletcher

Abstract Seventy-three digitally recorded body waves from nine multiply recorded small earthquakes in Monticello, South Carolina, are analyzed to estimate the energy radiated in P and S waves. Assuming Qα = Qβ = 300, the body-wave spectra are corrected for attenuation in the frequency domain, and the velocity power spectra are integrated over frequency to estimate the radiated energy flux. Focal mechanisms determined for the events by fitting the observed displacement pulse areas are used to correct for the radiation patterns. Averaging the results from the nine events gives 27.3 ± 3.3 for the ratio of the S-wave energy to the P-wave energy using 0.5 〈Fi〉 as a lower bound for the radiation pattern corrections, and 23.7 ± 3.0 using no correction for the focal mechanisms. The average shift between the P-wave corner frequency and the S-wave corner frequency, 1.24 ± 0.22, gives the ratio 13.7 ± 7.3. The substantially higher values obtained from the integral technique implies that the P waves in this data set are depleted in energy relative to the S waves. Cursory inspection of the body-wave arrivals suggests that this enervation results from an anomalous site response at two of the stations. Using the ratio of the P-wave moments to the S-wave moments to correct the two integral estimates gives 16.7 and 14.4 for the ratio of the S-wave energy to the P-wave energy.


1974 ◽  
Vol 64 (6) ◽  
pp. 1621-1627 ◽  
Author(s):  
J. C. Savage

abstract A comprehensive set of body-wave spectra has been calculated for the Haskell fault model generalized to a circular fault surface. These spectra are used to show that in practice the P-wave corner frequency (ƒp) may exceed the S-wave corner frequency (ƒs) when near-sonic or transonic rupture propagation obtains. The explanation appears to be that in such cases ƒs is so large that it is not identified within the recorded band, but rather a secondary corner is mistaken for ƒs. As a consequence of failing to detect the true asymptotic trend, the high-frequency falloff of the spectrum with frequency is substantially less for S waves than for P waves. This explanation appears to be consistent with the demonstration by Molnar, Tucker, and Brune (1973) that ƒp may exceed ƒs.


1974 ◽  
Vol 64 (4) ◽  
pp. 1159-1180 ◽  
Author(s):  
F. A. Dahlen

abstract We construct a theoretical three-dimensional kinematical model of shallow-focus earthquake faulting in order to investigate the ratio of the P- and S-wave corner frequencies of the far-field elastic radiation. We attempt to incorporate in this model all of the important gross kinematical features which would arise if ordinary mechanical friction should be the dominant traction resisting fault motion. These features include a self-similar nucleation at a single point, a subsonic spreading of rupture away from that point, and a termination of faulting by smooth deceleration. We show that the ratio of the P-wave corner frequency to the S-wave corner frequency for any model which has these features will be less than unity at all points on the focal sphere.


1989 ◽  
Vol 60 (3) ◽  
pp. 95-100 ◽  
Author(s):  
S.E. Hough ◽  
K. Jacob ◽  
R. Busby ◽  
P.A. Friberg

Abstract We present analysis of a magnitude 3.5 event which occurred at 9 km epicentral distance from a digital strong motion instrument operated by the National Center for Earthquake Engineering Research. Although the size of this isolated event is such that it can scarcely be considered to be a significant earthquake, a careful analysis of this high quality recording does yield several interesting results: 1) the S-wave spectra can be interpreted in terms of a simple omega-squared source spectrum and frequency-independent attenuation, 2) there is the suggestion of a poorly-resolved resonance in the P-wave spectrum, and perhaps most importantly, 3) the apparently simple S-wave spectra can be fit almost equally well with a surprisingly wide range of seismic corner frequencies, from roughly 5 to 25 Hz. This uncertainty in corner frequency translates into uncertainties in inferred Q values of almost an order of magnitude, and into uncertainties in stress drop of two orders of magnitude. Given the high quality of the data and the short epicentral distance to the station, we consider it likely that resolution of spectral decay and corner frequency will be at least as poor for any other recording of earthquakes with comparable or smaller magnitudes.


2002 ◽  
Vol 10 (04) ◽  
pp. 445-464 ◽  
Author(s):  
MICHAEL J. BUCKINGHAM ◽  
ERIC M. GIDDENS ◽  
FERNANDO SIMONET ◽  
THOMAS R. HAHN

The sound from a light aircraft in flight is generated primarily by the propeller, which produces a sequence of harmonics in the frequency band between about 80 Hz and 1 kHz. Such an airborne sound source has potential in underwater acoustics applications, including inversion procedures for determining the wave properties of marine sediments. A series of experiments has recently been performed off the coast of La Jolla, California, in which a light aircraft was flown over a sensor station located in a shallow (approximately 15 m deep) ocean channel. The sound from the aircraft was monitored with a microphone above the sea surface, a vertical array of eight hydrophones in the water column, and two sensors, a hydrophone and a bender intended for detecting shear waves, buried 75 cm deep in the very-fine-sand sediment. The propeller harmonics were detected on all the sensors, although the s-wave was masked by the p-wave on the buried bender. Significant Doppler shifts of the order of 17%, were observed on the microphone as the aircraft approached and departed from the sensor station. Doppler shifting was also evident in the hydrophone data from the water column and the sediment, but to a lesser extent than in the atmosphere. The magnitude of the Doppler shift depends on the local speed of sound in the medium in which the sensor is located. A technique is described in which the Doppler difference frequency between aircraft approach and departure is used to determine the speed of sound at low-frequencies (80 Hz to 1 kHz) in each of the three environments, the atmosphere, the ocean and the sediment. Several experimental results are presented, including the speed of sound in the very fine sand sediment at a nominal frequency of 600 Hz, which was found from the Doppler difference frequency of the seventh propeller harmonic to be 1617 m/s.


2021 ◽  
Author(s):  
Fatma Sevil Malcıoğlu ◽  
Hakan Süleyman ◽  
Eser Çaktı

Abstract An MW 4.5 earthquake took place on September 24, 2019 in the Marmara Sea. Two days after, on September 26, 2019, Marmara region was rattled by an MW5.7 earthquake. With the intention of compiling an ample strong ground motion data set of recordings, we have utilized the stations of Istanbul Earthquake Rapid Response and Early Warning System operated by the Department of Earthquake Engineering of Boğaziçi University and of the National Strong Motion Network operated by AFAD. All together 438 individual records are used to calculate the source parameters of events; namely, corner frequency, radius, rupture area, average source dislocation, source duration and stress drop. Some of these parameters are compared with empirical relationships and discussed extensively. Duration characteristics are analyzed in two steps; first, by making use of the time difference between P-wave and S-wave onsets and then, by considering S-wave durations and significant durations. It is observed that they yield similar trends with global models. PGA, PGV and SA values are compared with three commonly used ground motion prediction models. At distances closer than about 60 km observed intensity measures mostly conform with the GMPE predictions. Beyond 60 km their attenuation is clearly faster than those of GMPEs. Frequency-dependent Q models are developed for both events. Their consistency with existing regional models are confirmed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yadab P. Dhakal ◽  
Takashi Kunugi

We analyzed strong-motion records at the ground and borehole in and around the Kanto Basin and the seafloor in the Japan Trench area from three nearby offshore earthquakes of similar magnitudes (Mw 5.8–5.9). The seafloor strong-motion records were obtained from S-net, which was established to enhance tsunami and earthquake early warnings after the 2011 great Tohoku-oki earthquake disaster. The borehole records were obtained from MeSO-net, a dense network of seismometers installed at a depth of 20 m in the Tokyo metropolitan area. The ground records were obtained from the K-NET and KiK-net networks, established after the 1995 great Hanshin-Awaji earthquake disaster. The MeSO-net and S-net stations record the shakings continuously, while the K-NET and KiK-net records are based on triggering thresholds. It is crucial to evaluate the properties of strong motions recorded by the S-net for earthquake early warning (EEW). This paper compared the peak ground accelerations (PGAs) and peak ground velocities (PGVs) between the S-net and K-NET/KiK-net stations. Because the MeSO-net records were from the borehole, we compared the PGAs and significant durations of the low-frequency motions (0.1–0.5 Hz) between the S-net and MeSO-net stations from identical record lengths. We found that the horizontal PGAs and PGVs at the S-net sites were similar to or larger than the K-NET/KiK-net sites for the S wave. In contrast, the vertical PGAs and PGVs at the S-net sites were similar to or smaller than those at the K-NET/KiK-net sites for the S wave. Particularly, the PGAs and PGVs for the P-wave parts on the vertical-component records of S-net were, on average, much smaller than those of K-NET/KiK-net records. The difference was more evident in the PGAs. The average ratios of S-wave horizontal to vertical PGAs were about 2.5 and 5 for the land and S-net sites, respectively. The low-frequency PGAs at the S-net sites were similar to or larger than those of the MeSO-net borehole records. The significant durations between the two-networks low-frequency records were generally comparable. Quantification of the results from a larger dataset may contribute to ground-motion prediction for EEW and the design of the offshore facilities.


2020 ◽  
Author(s):  
Eser Çakti ◽  
Fatma Sevil Malcioğlu ◽  
Hakan Süleyman

<p>On 24<sup>th</sup> and 26<sup>th</sup>  September 2019, two earthquakes of M<sub>w</sub>=4.5 and M<sub>w</sub>=5.6 respectively took place in the Marmara Sea. They were associated with the Central Marmara segment of the North Anatolian Fault Zone, which is pinpointed by several investigators as the most likely segment to rupture in the near future giving way to an earthquake larger than M7.0. Both events were felt widely in the region. The M<sub>w</sub>=5.6 event, in particular, led to a number of building damages in Istanbul, which were larger than expected in number and severity. There are several strong motion networks in operation in and around Istanbul. We have compiled a data set of recordings obtained at the stations of the Istanbul Earthquake Rapid Response and Early Warning operated by the Department of Earthquake Engineering of Bogazici University and of the National Strong Motion Network operated by AFAD. It consists of 148 three component recordings, in total.  444 records in the data set, after correction, were analyzed to estimate the source parameters of these events, such as corner frequency, source duration, radius and rupture area, average source dislocation and stress drop. Duration characteristics of two earthquakes were analyzed first by considering P-wave and S-wave onsets and then, focusing on S-wave and significant durations. PGAs, PGVs and SAs were calculated and compared with three commonly used ground motion prediction models (i.e  Boore et al., 2014; Akkar et al., 2014 and Kale et al., 2015). Finally frequency-dependent Q models were estimated using the data set and their validity was dicussed by comparing with previously developed models.</p>


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D73-D79 ◽  
Author(s):  
Qiaomu Qi ◽  
Arthur C. H. Cheng ◽  
Yunyue Elita Li

ABSTRACT Formation S-wave attenuation, when combined with compressional attenuation, serves as a potential hydrocarbon indicator for seismic reservoir characterization. Sonic flexural wave measurements provide a direct means for obtaining the in situ S-wave attenuation at log scale. The key characteristic of the flexural wave is that it propagates at the formation shear slowness and experiences shear attenuation at low frequency. However, in a fast formation, the dipole log consists of refracted P- and S-waves in addition to the flexural wave. The refracted P-wave arrives early and can be removed from the dipole waveforms through time windowing. However, the refracted S-wave, which is often embedded in the flexural wave packet, is difficult to separate from the dipole waveforms. The additional energy loss associated with the refracted S-wave results in the estimated dipole attenuation being higher than the shear attenuation at low frequency. To address this issue, we have developed a new method for accurately determining the formation shear attenuation from the dipole sonic log data. The method uses a multifrequency inversion of the frequency-dependent flexural wave attenuation based on energy partitioning. We first developed our method using synthetic data. Application to field data results in a shear attenuation log that is consistent with lithologic interpretation of other available logs.


Sign in / Sign up

Export Citation Format

Share Document