Numerical modeling of seismic waves with a 3-D, anisotropic scalar-wave equation

1991 ◽  
Vol 81 (3) ◽  
pp. 769-780
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

Abstract By systematically defining the orientation and amount of velocity anisotropy at every point in a computational grid, and modifying the scalar-wave equation to accommodate directionally dependent velocity coefficients, scalar waves may be numerically synthesized in heterogeneous anisotropic 3-D structure by finite-differencing. The use of an intermediate, local, rotated coordinate system associated with each grid point allows the anisotropy orientation to conform spatially with 3-D structure, stress orientations, or any other correlate of the anisotropy. Both travel times and amplitudes in anisotropic media may differ significantly from those in the corresponding isotropic media. Under some conditions, the seismic response of an anisotropic flat-layered medium is nearly identical to, and may be confused with, that of a symmetrical isotropic structure. In general, these alternate interpretations can be evaluated by obtaining independent data from different recording configurations.

2010 ◽  
Vol 181 (11) ◽  
pp. 1850-1858 ◽  
Author(s):  
Xiaofan Li ◽  
Tong Zhu ◽  
Meigen Zhang ◽  
Guihua Long

2009 ◽  
Vol 24 (16) ◽  
pp. 1277-1287 ◽  
Author(s):  
B. RAYCHAUDHURI ◽  
F. RAHAMAN ◽  
M. KALAM ◽  
A. GHOSH

Motion of massive and massless test particle in equilibrium and nonequilibrium case is discussed in a dyadosphere geometry through Hamilton–Jacobi method. Scalar wave equation for massless particle is analyzed to show the absence of superradiance in the case of dyadosphere geometry.


1983 ◽  
pp. 640-655 ◽  
Author(s):  
Allan W. Snyder ◽  
John D. Love

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. T201-T210 ◽  
Author(s):  
Jing-Bo Chen

Forward modeling is an important foundation of full-waveform inversion. The rotated optimal nine-point scheme is an efficient algorithm for frequency-domain 2D scalar wave equation simulation, but this scheme fails when directional sampling intervals are different. To overcome the restriction on directional sampling intervals of the rotated optimal nine-point scheme, I introduce a new finite-difference algorithm. Based on an average-derivative technique, this new algorithm uses a nine-point operator to approximate spatial derivatives and mass acceleration term. The coefficients can be determined by minimizing phase-velocity dispersion errors. The resulting nine-point optimal scheme applies to equal and unequal directional sampling intervals, and can be regarded a generalization of the rotated optimal nine-point scheme. Compared to the classical five-point scheme, the number of grid points per smallest wavelength is reduced from 13 to less than four by this new nine-point optimal scheme for equal and unequal directional sampling intervals. Three numerical examples are presented to demonstrate the theoretical analysis. The average-derivative algorithm is also extended to a 2D viscous scalar wave equation and a 3D scalar wave equation.


Sign in / Sign up

Export Citation Format

Share Document