isotropic structure
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 11 (4) ◽  
pp. 1-18
Author(s):  
Q. Bai ◽  
H. Konietzky

This contribution proposes a numerical microstructural modeling approach to investigate stress-induced seismic velocity changes on anisotropic rocks. By introducing pre-existing cracks with preferential orientations in bonded-particle assemblies, the transverse isotropic structure of the Whitby Mudstone is simulated. Using power-law distributed aperture and calibrated micro-properties, we successfully reproduce stress-dependent velocity changes on Whitby Mudstones with different anisotropic angles in relation to the applied loads. The proposed model also duplicates the directional dependence of wave speed with respect to the bedding plane as expected theoretically. The numerical models show that velocity increase results from the closure of pre-existing cracks due to load increase. Direct relations are established between velocity changes and opened crack density (or crack closure), which displays a similar tendency compared with theoretical predictions. This relation can be used to quantify the micromechanisms behind the velocity changes. The proposed model provides the ability to directly examine the micro-processes underlying velocity changes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1704
Author(s):  
Botong Liu ◽  
Zhipeng Li ◽  
Haitao Sun ◽  
Zhenrong Sun ◽  
Yan Yang

The interaction between the CF2Br2 molecule and 800/400 nm intense femtosecond laser fields is investigated by direct current (dc) sliced velocity mapping imaging implementation. By analyzing the kinetic energy release distribution and angular distribution of fragment ions, the dissociation channels along C-Br bond cleavage have been determined. The isotropic structure of the angular distribution for CF2Br+ ions is attributed to the coupling between the excited states. Additionally, a unique elimination channel of CF2Br2+ → CF2 + Br2+ has been observed and identified in the case of 400 nm laser field, in which the two C-Br bonds break asynchronously.


2021 ◽  
Vol 25 (Spec. issue 1) ◽  
pp. 111-120
Author(s):  
Seda Goktepe Korpeoglu

An isotropic structure modelled as a Timoshenko beam is considered for the optimal vibration control problem. The beam model to be controlled is described by a distributed parameter system with the selection of Timoshenko?s shear correction factor. Control of the vibrations is achieved through a function placed on the boundary conditions. The performance index which seeks to be minimized indicates that the goal is to minimize the magnitude of performance measure without consuming control effort in large quantities. It is shown how to derive the optimal control function using Pontryagin?s principle that turns the control problem into solving optimality system of PDE with terminal values. Wellposedness of the optimal solution on the control set is presented and controllability of the problem is analyzed. Numerical simulations are given in terms of computer codes produced in MATLAB? in the forms of graphical and tables in order to show the applicability and effectiveness of the control acting on the boundary conditions.


2020 ◽  
pp. 0734242X2094636
Author(s):  
Mohammad Javad Mehdizadeh ◽  
Nader Shariatmadari ◽  
Mehran Karimpour-Fard

In this study, a reliability-based analysis of slope stability in a landfill considering the spatial variability of shear strength (c and φ) and unit weight ( γ) of municipal solid waste was performed using the random finite difference method. The effect of the anisotropic correlation (AC) structure of random variables including c, φ, and γ on mean and coefficient of variation (CoV) of safety factor values was investigated using Monte Carlo simulation. Also, probability of failure was determined through probability distribution fitting to a series of safety factor data. The results showed that the AC of the random variables has a significant effect on the stochastic safety factor of landfill slope. In general, the mean of the stochastic safety factor decreases with increasing horizontal and vertical correlation lengths (CLs). Also, the CoV of the safety factor increased with increase in horizontal or vertical CLs or both. Moreover, it was found that failure probability increases with an increase in the horizontal and vertical CLs and assuming isotropic structure for the correlation of random variables leads to the underestimation of failure probability. Overall, the results indicate that assuming an AC structure results in different failure mechanisms in the landfill slope, which are different from the deterministic cases.


2019 ◽  
Vol 220 (3) ◽  
pp. 2056-2067
Author(s):  
Sven Schippkus ◽  
Dimitri Zigone ◽  
Götz Bokelmann ◽  
G Hetényi ◽  
R Abreu ◽  
...  

SUMMARY We infer seismic azimuthal anisotropy from ambient-noise-derived Rayleigh waves in the wider Vienna Basin region. Cross-correlations of the ambient seismic field are computed for 1953 station pairs and periods from 5 to 25 s to measure the directional dependence of interstation Rayleigh-wave group velocities. We perform the analysis for each period on the whole data set, as well as in overlapping 2°-cells to regionalize the measurements, to study expected effects from isotropic structure, and isotropic–anisotropic trade-offs. To extract azimuthal anisotropy that relates to the anisotropic structure of the Earth, we analyse the group velocity residuals after isotropic inversion. The periods discussed in this study (5–20 s) are sensitive to crustal structure, and they allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths, fast orientations in the Eastern Alps are S/N to SSW/NNE, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress-field. At greater depths, fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the alignment of crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.


2018 ◽  
Vol 48 (4) ◽  
pp. 78-94
Author(s):  
Naman Jain

Abstract This paper presents the mathematical model to solve the topological optimization problem. Effect of higher order element on the optimum topology of the isotropic structure has been studied by using 8-node elements which help in decreasing the numerical instability due to checkerboarding problem in the final topologies obtained. The algorithms are investigated on a number of two-dimensional benchmark problems. MATLAB code has been developed for different numerical two dimensional linear isotropic structure and SIMP approach is applied. Models are discretized using linear quadratic 4-node and 8-node elements and optimal criteria method is used in the numerical scheme. Checkerboarding instability in the final topology is greatly reduces when incorporated 8-node element instead of 4-node element which can be confirmed through comparing the final topologies of the structure.


2018 ◽  
Vol 37 (7) ◽  
pp. 429-440 ◽  
Author(s):  
Muhammad Umair ◽  
Syed Talha Ali Hamdani ◽  
Muhammad Ayub Asghar ◽  
Tanveer Hussain ◽  
Mehmet Karahan ◽  
...  

Three-dimensional multilayer woven composites are mostly used in high-performance applications due to their excellent out-of-plane mechanical performance. The current research presents an experimental investigation on the mechanical behavior of three-dimensional orthogonal layer-to-layer interlock composites. The glass filament yarn and carbon tows were used as reinforcement in warp and weft directions respectively, whereas epoxy was used as a resin for composite fabrication. Three different types of orthogonal layer to layer interlock namely warp, weft, and bi-directional interlock composites were fabricated and the effect of interlocking pattern on their mechanical performance was evaluated. The evaluation of the mechanical performance was made on the basis of tensile strength, impact strength, flexural strength, and dynamic mechanical analysis of composites in warp and weft directions. It was found that warp and weft interlock composites showed better tensile behavior as compared to bi-directional interlock composite both in the warp and weft directions, due to the presence of less crimp as compared to the bi-directional interlock composite. However, the bi-directional interlock composite exhibited considerably superior impact strength and three-point bending strength as compared to the other structures under investigation. These superior properties of bi-directional interlock composites were achieved by interlocking points in warp and weft directions simultaneously, creating a more compact and isotropic structure. Tan delta values of dynamic mechanical analysis results showed that bi-directional interlock composite displayed the highest capacity of energy dissipation in the warp and weft directions while weft interlock structures displayed highest storage and loss moduli in the warp direction.


Sign in / Sign up

Export Citation Format

Share Document