Pulse-shape distortion introduced by broadband deconvolution

1992 ◽  
Vol 82 (1) ◽  
pp. 238-258
Author(s):  
Stuart A. Sipkin ◽  
Arthur L. Lerner-Lam

Abstract The availability of broadband digitally recorded seismic data has led to an increasing number of studies using data from which the instrument transfer function has been deconvolved. In most studies, it is assumed that raw ground motion is the quantity that remains after deconvolution. After deconvolving the instrument transfer function, however, seismograms are usually high-pass filtered to remove low-frequency noise caused by very long-period signals outside the frequency band of interest or instabilities in the instrument response at low frequencies. In some cases, data must also be low-pass filtered to remove high-frequency noise from various sources. Both of these operations are usually performed using either zero-phase (acausal) or minimum-phase (causal) filters. Use of these filters can lead to either bias or increased uncertainty in the results, especially when taking integral measures of the displacement pulse. We present a deconvolution method, based on Backus-Gilbert inverse theory, that regularizes the time-domain deconvolution problem and thus mitigates any low-frequency instabilities. We apply a roughening constraint that minimizes the long-period components of the deconvolved signal along with the misfit to the data, emphasizing the higher frequencies at the expense of low frequencies. Thus, the operator acts like a high-pass filter but is controlled by a trade-off parameter that depends on the ratio of the model variance to the residual variance, rather than an ad hoc selection of a filter corner frequency. The resulting deconvolved signal retains a higher fidelity to the original ground motion than that obtained using a postprocess high-pass filter and eliminates much of the bias introduced by such a filter. A smoothing operator can also be introduced that effectively applies a low-pass filter. This smoothing is useful in the presence of blue noise, or if inferences about source complexity are to be made from the roughness of the deconvolved signal.

1994 ◽  
Vol 10 (4) ◽  
pp. 374-381 ◽  
Author(s):  
Stephen D. Murphy ◽  
D. Gordon E. Robertson

To remove low-frequency noise from data such as DC-bias from electromyo-grams (EMGs) or drift from force transducers, a high-pass filter was constructed from a low-pass filter of known characteristics. A summary of the necessary steps required to transform the low-pass digital were developed. Contaminated EMG and force platform data were used to test the filter. The high-pass filter successfully removed the low-frequency noise from the EMG signals. The high-pass filter was then cascaded with the low-pass filter to produce a band-pass filter to enable simultaneous high- and low-frequency noise reduction.


2021 ◽  
Vol 24 (3) ◽  
pp. 689-714
Author(s):  
David Kubanek ◽  
Jaroslav Koton ◽  
Jan Jerabek ◽  
Darius Andriukaitis

Abstract The formula of the all-pole low-pass frequency filter transfer function of the fractional order (N + α) designated for implementation by non-cascade multiple-feedback analogue structures is presented. The aim is to determine the coefficients of this transfer function and its possible variants depending on the filter order and the distribution of the fractional-order terms in the transfer function. Optimization algorithm is used to approximate the target Butterworth low-pass magnitude response, whereas the approximation errors are evaluated. The interpolated equations for computing the transfer function coefficients are provided. An example of the transformation of the fractional-order low-pass to the high-pass filter is also presented. The results are verified by simulation of multiple-feedback filter with operational transconductance amplifiers and fractional-order element.


Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050031 ◽  
Author(s):  
KANG-JIA WANG

The local fractional derivative (LFD) has gained much interest recently in the field of electrical circuits. This paper proposes a non-differentiable (ND) model of high-pass filter described by the LFD, where the ND transfer function is obtained with the help of the local fractional Laplace transform, and its parameters and properties are studied. The obtained results reveal the sufficiency of the LFD for analyzing circuit systems in fractal space.


2003 ◽  
Author(s):  
Chikahiro Minowa

In this paper, a new method of baseline correction on strong motion acceleration records is presented and the fundamental concept for baseline corrections on the earthquake strong motions is described. Considering the filtering effect, the earthquakes ground motion displacements of 1995 JMA KOBE, 1999 Kocaeli YPT and 1999 Chi-Chi TCU068 are discussed. Also, the linear sloshing responses of large liquid tanks subjected to these motions were discussed. Since liquid storage tanks show the low frequency (long period) sloshing characteristics and the strong motion characteristics of 1999 Kocaeli and Chi-Chi earthquakes are also low frequencies and large permanent displacements, the sloshing responses in large liquid tanks, especially in long natural periods, were significantly affected by the low frequency motions (large permanent displacements) of these devastating earthquakes. It is very important to use suitable ground motion characterized low frequency content for earthquake resistant design of liquid storage tanks. The baseline correction method presented in the paper may be adequately used to correct strong motion records for large liquid storage design.


2020 ◽  
Vol 13 (2) ◽  
pp. 107-114
Author(s):  
Muhammad Syifaul Linnas ◽  
Sumber Sumber ◽  
Prastawa Assalim Tetraputra

    Electrocardiograph (ECG) secara rutin dilakukan oleh operator terampil yang terbiasa dengan penempatan masing-masing elektroda pada pasien. Posisi elektroda yang salah dapat menyebabkan kesalahan kritis dalam diagnosis dan perawatan penyakit jantung. Tujuan dari penelitian ini adalah mendesain sebuah Portable Electrocardiograph dengan Sadapan Pada Telapak Tangan dan Kaki. Kontribusi dari penelitian ini adalah  memudahkan orang awam dalam bidang kesehatan dalam hal penggunaan Electrocardiograph. Penelitian ini juga bertujuan  mendesain Electrocardiograph yang cukup terjangkau bagi puskesmas/pusat-pusat pelayanan medis di daerah. Agar desain ini dapat memudahkan dalam metode penggunaan alat, maka dibuatlah alat Electrocardiograph (ECG) dengan elektroda pad yang akan diletakkan pada telapak tangan dan telapak kaki yang telah di berikan tanda pada elektroda tersebut. Electrocardiograph (ECG) menggunakan desain High Pass Filter (Pasif 20dB ditambah Non Inverting Amplifier, Low Pass Filter (LPF) 40dB, dan notch filter yang akan ditampilkan pada layar monitor Personal Computer (PC). Dari hasil sadapan beberapa responden, terlihat hasil tampilan yang menyerupai/mendekati sinyal Electrocardiograph (ECG) sebenarnya. Kekurangan dari modul ini jika tidak adanya grounding yang baik dari power suply maka akan terjadi noise pada hasil sinyal yang akan ditampilkan. Hasil penelitian ini dapat di implementasikan pada Electrocardiograph (ECG) konvensional untuk meningkatkan kemudahan dalam hal penggunaan alat.    


1977 ◽  
Vol 55 (18) ◽  
pp. 2437-2438 ◽  
Author(s):  
Terry A. Tattar ◽  
David M. Sylvia

Frequency spectra of healthy plant storage tissue indicate that the tissue acts as a high-pass filter that attenuates low frequencies and allows high frequencies to pass through. During progressive deterioration of the tissue from infection of soft-rot bacteria, the frequency spectra indicated a loss in ability of the tissues to filter low frequency signals.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Zamir A. Zulkefli ◽  
Maurice L. Adams

A proposed solution to reducing gear mesh-frequency vibrations in a gear-set involves the utilization of hydrostatic bearings placed in series, load wise, with the main support bearing. The hydrostatic bearings are expected to utilize its low pass filtering effect of the vibrational energies to prevent its transmission from the shaft to the gear housing where it would be emitted as noise. The present investigation examines the frequency response of a single-recess circular hydrostatic bearing under applied sinusoidal loads. The results show that as the driving frequency increases, the filtering effect of the hydrostatic bearing increases. The exhibited behavior is similar to the behavior of a low pass filter: negligible filtering effect at low frequencies, the filtering effect increasing from 0% to 90% over the midfrequencies range and the filtering effect remaining at the maximum value as the frequencies of the applied signals continue to increase. This observed behavior is expected to play a central role in the proposed gear mesh-frequency vibration mitigation system.


Sign in / Sign up

Export Citation Format

Share Document