scholarly journals Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

1994 ◽  
Vol 84 (3) ◽  
pp. 761-767
Author(s):  
S. E. Hough ◽  
Y. Ben-Zion ◽  
P. Leary

Abstract Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. MR153-MR171 ◽  
Author(s):  
Linsen Zhan ◽  
Jun Matsushima

The nonintuitive observation of the simultaneous high velocity and high attenuation of ultrasonic waves near the freezing point of brine was previously measured in partially frozen systems. However, previous studies could not fully elucidate the attenuation variation of ultrasonic wave propagation in a partially frozen system. We have investigated the potential attenuation mechanisms responsible for previously obtained laboratory results by modeling ultrasonic wave transmission in two different partially frozen systems: partially frozen brine (two phases composed of ice and unfrozen brine) and unconsolidated sand (three phases composed of ice, unfrozen brine, and sand). We adopted two different rock-physics models: an effective medium model for partially frozen brine and a three-phase extension of the Biot model for partially frozen unconsolidated sand. For partially frozen brine, our rock-physics study indicated that squirt flow caused by unfrozen brine inclusions in porous ice could be responsible for high P-wave attenuation around the freezing point. Decreasing P-wave attenuation below the freezing point can be explained by the gradual decrease of squirt flow due to the gradual depletion of unfrozen brine. For partially frozen unconsolidated sand, our rock-physics study implied that squirt flow between ice grains is a dominant factor for P-wave attenuation around the freezing point. With decreasing temperature lower than the freezing point, the friction between ice and sand grains becomes more dominant for P-wave attenuation because the decreasing amount of unfrozen brine reduces squirt flow between ice grains, whereas the generation of ice increases the friction. The increasing friction between ice and sand grains caused by ice formation is possibly responsible for increasing the S-wave attenuation at decreasing temperatures. Then, further generation of ice with further cooling reduces the elastic contrast between ice and sand grains, hindering their relative motion; thus, reducing the P- and S-wave attenuation.


2020 ◽  
Vol 110 (3) ◽  
pp. 1387-1392 ◽  
Author(s):  
Qing Chen ◽  
Wang-Ping Chen

ABSTRACT We augment the method of virtual deep seismic sounding (VDSS) by adding the phases Sp, the SV-P conversion across the Moho, to determine the average speed of the S wave (VS) in the crust. VDSS uses the strong SV-P conversion below the free surface from teleseismic earthquakes as a virtual source for wide-angle reflections of the P wave. The large signal generated by the virtual source is the strongest aspect of VDSS in which no stacking is necessary to build up the signal. Previous work used the large moveout of the wide-angle reflection, phase SsPmp, relative to the direct S-wave arrival, phase Ss, to minimize the trade-off between bulk P-wave speed (VP) and thickness of the crust (H). It is then straightforward to use the timing of the phase Sp to constrain VS. As examples, we show that this method works for data from both temporary and permanent seismic deployments in contrasting tectonic settings. Specifically, VS under station FORT in western Australia and H1620 in central Tibet are 3.77±0.08 and 3.42±0.11  km/s, respectively. This development complements the undertaking of using information from only the S-wave train to extract all three seismic parameters of the bulk crust, VP, VS, and H. These parameters are important for constraining overall silica content of the crust.


Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Thomas M. Daley ◽  
Ernest L. Majer ◽  
John E. Peterson

Multiple seismic crosswell surveys have been acquired and analyzed in a fractured basalt aquifer at Idaho National Engineering and Environmental Laboratory. Most of these surveys used a high‐frequency (1000–10,000 Hz) piezoelectric seismic source to obtain P‐wave velocity tomograms. The P‐wave velocities range from less than 3200 m/s to more than 5000 m/s. Additionally, a new type of borehole seismic source was deployed as part of the subsurface characterization program at this contaminated groundwater site. This source, known as an orbital vibrator, allows simultaneous acquisition of P‐ and S‐waves at frequencies of 100 to 400 Hz, and acquisition over larger distances. The velocity tomograms show a relationship to contaminant transport in the groundwater; zones of high contaminant concentration are coincident with zones of low velocity and high attenuation and are interpreted to be fracture zones at the boundaries between basalt flows. The orbital vibrator data show high Vp/Vs values, from 1.8 to 2.8. In spite of the lower resolution of orbital vibrator data, these data were sufficient for constraining hydrologic models at this site while achieving imaging over large interwell distances. The combination of piezoelectric data for closer well spacing and orbital vibrator data for larger well spacings has provided optimal imaging capability and has been instrumental in our understanding of the site aquifer's hydrologic properties and its scale of heterogeneity.


Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 659-667 ◽  
Author(s):  
S. T. Chen

Laboratory measurements have verified a novel technique for direct shear‐wave logging in hard and soft formations with a dipole source, as recently suggested in theoretical studies. Conventional monopole logging tools are not capable of measuring shear waves directly. In particular, no S waves are recorded in a soft formation with a conventional monopole sonic tool because there are no critically refracted S rays when the S-wave velocity of the rock is less than the acoustic velocity of the borehole fluid. The present studies were conducted in the laboratory with scale models representative of sonic logging conditions in the field. We have used a concrete model to represent hard formations and a plastic model to simulate a soft formation. The dipole source, operating at frequencies lower than those conventionally used in logging, substantially suppressed the P wave and excited a wave train whose first arrival traveled at the S-wave velocity. As a result, one can use a dipole source to log S-wave velocity directly on‐line by picking the first arrival of the full wave train, in a process similar to that used in conventional P-wave logging. Laboratory experiments with a conventional monopole source in a soft formation did not produce S waves. However, the S-wave velocity was accurately estimated by using Biot’s theory, which required measuring the Stoneley‐wave velocity and knowing other borehole parameters.


2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Edoardo Del Pezzo ◽  
Giovanni Chiodini ◽  
Stefano Caliro ◽  
Francesca Bianco ◽  
Rosario Avino

<p>The seismic velocity and attenuation tomography images, calculated inverting respectively P-wave travel times and amplitude spectra of local VT quakes at Mt. Vesuvius have been reviewed and graphically represented using a new software recently developed using Mathematica<span><sup>8TM</sup></span>. The 3-D plots of the interpolated velocity and attenuation fields obtained through this software evidence low-velocity volumes associated with high attenuation anomalies in the depth range from about 1 km to 3 km below the sea level. The heterogeneity in the distribution of the velocity and attenuation values increases in the volume centred around the crater axis and laterally extended about 4 km, where the geochemical interpretation of the data from fumarole emissions reveals the presence of a hydrothermal system with temperatures as high as 400-450°C roughly in the same depth range (1.5 km to 4 km). The zone where the hydrothermal system is space-confined possibly hosted the residual magma erupted by Mt. Vesuvius during the recent eruptions, and is the site where most of the seismic energy release has occurred since the last 1944 eruption.</p>


2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Edoardo Del Pezzo ◽  
Francesca Bianco

<p>New velocity and attenuation images of the geological structures below Mt. Vesuvius have been obtained using the programming facilities as well as the enhanced graphical power of Mathematica<span><sup>8TM</sup></span>. The velocity and attenuation space distributions, already calculated inverting respectively P-wave travel times and amplitude spectra of local VT quakes, are first optimally interpolated and then graphically represented in a new Mathematica<span><sup>8TM</sup></span> code notebook (a powerful computational document with more facilities than a simple code) developed by the present authors. The notebook aims at interactively and friendly representing 3D volume distributions of velocity and attenuation parameters. The user can easily obtain vertical sections (N-S, E-W, NE-SW and NW-SE oriented) and define color scales to represent velocity or attenuation variations or prefer iso-surface plots to represent the pattern of peculiar geological structures. The use of dynamic graphical representation, allowing the sliding of any (horizontal and/or vertical) slice through the volume under study, gives an unusual and powerful vision of any small velocity or attenuation anomaly. The (open source) code, coupled with the friendly use of internal routines of Mathematica, allows to adapt the graphical representation to any user necessity. The method appears to be particularly adapt to represent attenuation images, where the space variations of the parameters are strong with respect to their average. The 3-D plots of the interpolated velocity and attenuation fields enhance the image of Mt. Vesuvius structure, evidencing low-velocity associated with high attenuation anomalies which appeared unfocused in the plots reported by Scarpa et al. [2002] and De Siena et al. [2009].</p>


1969 ◽  
Vol 59 (1) ◽  
pp. 385-398 ◽  
Author(s):  
Otto W. Nuttli

Abstract The underground Nevada explosions HALF-BEAK and GREELEY were unique in creating relatively large amplitude and long-period body S waves which could be detected at teleseismic distances. Observations of the travel times of these S waves provide a surface focus travel-time curve which in its major features is similar to a curve calculated from the upper mantle velocity model of Ibrahim and Nuttli (1967). This model includes a low-velocity channel at a depth of 150 to 200 km and regions of rapidly increasing velocity beginning at depths of 400 and 750 km. Observations of the S wave amplitudes suggest that a discontinuous increase in velocity occurs at 400 km, whereas at 750 km the velocity is continuous but the velocity gradient discontinuous. Body wave magnitudes calculated from S amplitudes are 5.3 ± 0.2 for GREELEY and 4.9 ± 0.2 for HALF-BEAK. These are about one unit less than body wave magnitudes from P amplitudes as reported by others. The shape and orientation of the radiation pattern of SH for both explosions are consistent with the Rayleigh and P-wave amplitude distribution of BILBY as given by Toksoz and Clermont (1967). This suggests that the regional stress field is the same at all three sites, and that the direction of cracking as well as the strain energy release in the elastic zone outside the cavity is determined by the regional stress field.


1991 ◽  
Vol 81 (4) ◽  
pp. 1057-1080 ◽  
Author(s):  
Richard C. Aster ◽  
Peter M. Shearer

Abstract Two borehole seismometer arrays (KNW-BH and PFO-BH) have been established in the Southern California Batholith region of the San Jacinto Fault zone by the U.S. Geological Survey. The sites are within 0.4 km of Anza network surface stations and have three-component seismometers deployed at 300 m depth, at 150 m depth, and at the surface. Downhole horizontal seismometers can be oriented to an accuracy of about 5° using regional and near-regional initial P-wave particle motions. Shear waves recorded downhole at the KNW-BH indicate that the strong alignment of initial S-wave particle motions previously observed at the (surface) KNW Anza site (KNW-AZ) is not generated in the near-surface weathered layer. The KNW-BH surface instrument, which sits atop a highly weathered zone, displays a significantly different (≈ 20°) initial S-wave polarization direction from that observed downhole and at KNW-AZ, which is bolted to an outcrop. Although downhole initial shear-wave particle motion directions are consistent with a shear-wave splitting hypothesis, observations of orthogonally polarized slow shear waves are generally elusive, even in seismograms recorded at 300 m. A cross-correlation measure of the apparent relative velocities of Sfast and Sslow horizontally polarized S waves suggests shallow shear-wave anisotropy, consistent with the observed initial S-wave particle motion direction, of 2.3 ± 1.7 per cent between 300 and 150 m and 7.5 ± 3.5 per cent between 150 and 0 m.


Sign in / Sign up

Export Citation Format

Share Document