Characterization and Modeling of Metabolic Stress Responses in Cellular Aging

2021 ◽  
Author(s):  
David J. Alfego
Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


2020 ◽  
Author(s):  
Mehrshad Sadria ◽  
Anita T. Layton

Abstract BackgroundCells adapt their metabolism and activities in response to signals from their surroundings, and this ability is essential for their survival in the face of perturbations. In tissues a deficit of these mechanisms is commonly associated with cellular aging and diseases, such as cardiovascular disease, cancer, immune system decline, and neurological pathologies. Several proteins have been identified as being able to respond directly to energy, nutrient, and growth factor levels and stress stimuli in order to mediate adaptations in the cell. In particular, mTOR, AMPK, and sirtuins are known to play an essential role in the management of metabolic stress and energy balance in mammals.MethodsTo understand the complex interactions of these signalling pathways and environmental signals, and how those interactions may impact lifespan and health-span, we have developed a computational model of metabolic signalling pathways. Specifically, the model includes the insulin/IGF-1 pathway, which couples energy and nutrient abundance to the execution of cell growth and division, (ii) mTORC1 and the amino acid sensors such as sestrin, (iii) the Preiss-Handler and salvage pathways, which regulate the metabolism of NAD+ and the NAD+-consuming factor SIRT1, (iv) the energy sensor AMPK, and (v) transcription factors FOXO and PGC-1α.ResultsThe model simulates the interactions among key regulators such as Akt, mTORC1, AMPK, NAD+, and SIRT, and predicts their dynamics. Key findings include the clinically important role of PRAS40 and diet in mTORC1 inhibition, and a potential link between SIRT1-activating compounds and premature autophagy. Moreover, the model captures the exquisite interactions of leucine, sestrin2, and arginine, and the resulting signal to the mTORC1 pathway. These results can be leveraged in the development of novel treatment of cancers and other diseases.ConclusionsThis study presents a state-of-the-art computational model for investigating the interactions among signaling pathways and environmental stimuli in growth, ageing, metabolism, and diseases. The model can be used as an essential component to simulate gene manipulation, therapies (e.g., rapamycin and wortmannin), calorie restrictions, and chronic stress, and assess their functional implications on longevity and ageing‐related diseases.


2018 ◽  
Vol 475 (6) ◽  
pp. 1037-1057 ◽  
Author(s):  
Alex B. Addinsall ◽  
Craig R. Wright ◽  
Sof Andrikopoulos ◽  
Chris van der Poel ◽  
Nicole Stupka

Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins — 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.


2019 ◽  
Vol 41 (01) ◽  
pp. 12-20 ◽  
Author(s):  
Patrick Wahl ◽  
Sebastian Mathes ◽  
Wilhelm Bloch ◽  
Philipp Zimmer

AbstractIn view of the growing amount of (intense) training in competitive sports, quick recovery plays a superior role in performance restoration. The aim of the present study was to compare the effects of active versus passive recovery during high-intensity interval training (HIIT) and sprint interval training (SIT) protocols on acute alterations of circulating blood cells. Twelve male triathletes/cyclists performed 1) a HIIT consisting of 4×4 min intervals, 2) a SIT consisting of 4×30s intervals, separated by either active or passive recovery. Blood samples were collected immediately before and at 0’, 30’, 60’ and 180’ (minutes) post-exercise. Outcomes comprised leukocytes, lymphocytes, neutrophils, mixed cell count, platelets, cellular inflammation markers (neutrophil/lymphocyte-ratio (NLR), platelet/lymphocyte-ratio (PLR)), and the systemic immune-inflammation index (SII). In view of HIIT, passive recovery attenuated the changes in lymphocytes and neutrophils compared to active recovery. In view of SIT, active recovery attenuated the increase in leukocytes, lymphocytes and absolute mixed cell count compared to passive recovery. Both protocols, independent of recovery, significantly increased NLR, PLR and SII up to 3h of recovery compared to pre-exercise values. The mode of recovery influences short-term alterations in the circulating fraction of leukocytes, lymphocytes, neutrophils and the mixed cell count, which might be associated with different hormonal and metabolic stress responses due to the mode of recovery.


1990 ◽  
Vol 73 (4) ◽  
pp. 661-670 ◽  
Author(s):  
K. J. S. Anand ◽  
D. D. Hansen ◽  
P. R. Hickey

2008 ◽  
Vol 23 (4) ◽  
pp. 375-385 ◽  
Author(s):  
Daniela Rocha Costa Fóscolo ◽  
Rodrigo Bastos Fóscolo ◽  
Umeko Marubayashi ◽  
Adelina Martha Reis ◽  
Cândido Celso Coimbra

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 685-685
Author(s):  
Scott Leiser ◽  
Hyo Choi ◽  
Ajay Bhat ◽  
Marshall Howington ◽  
Hillary Miller ◽  
...  

Abstract An organism’s ability to respond to stress is crucial for long-term survival. These stress responses are coordinated by distinct but overlapping pathways, many of which also regulate longevity across taxa. Our previous work identified a cell non-autonomous signaling pathway led by the hypoxia-inducible factor and resulting in induction of flavin-containing monooxygenase-2 (fmo-2) to promote health and longevity. Our current work identifies a distinct cell non-autonomous pathway downstream of dietary restriction (DR) that also relies on fmo-2 induction to promote health and longevity. We now find that these cell non-autonomous pathways can be mimicked by small molecule interventions that increase longevity by inducing fmo-2. Based on the commonalities of these pathways, we hypothesized that fmo-2, a classically annotated xenobiotic enzyme, might play a key endogenous role in responding to metabolic stress. Our resulting data, using metabolic profiling and further epistatic analysis, both support this hypothesis and link fmo-2’s mechanism to modifications in one-carbon metabolism (OCM), a key intermediate pathway consisting of the folate and methionine cycles. Using mathematical modeling and a labeled metabolomics approach, we were able to further identify the likely mechanism of fmo-2-mediated metabolic effects and connect them to both OCM and downstream components. We propose that fmo-2 is induced cell non-autonomously to modify systemic metabolism and longevity, and that fmo-2 is a key member of a conserved metabolic stress response.


Sign in / Sign up

Export Citation Format

Share Document