Path dependence and strength anisotropy of mechanical behavior in cold-compacted powders

2021 ◽  
Author(s):  
Steven Galen
Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2020 ◽  
pp. 51-81
Author(s):  
D. P. Frolov

The transaction cost economics has accumulated a mass of dogmatic concepts and assertions that have acquired high stability under the influence of path dependence. These include the dogma about transaction costs as frictions, the dogma about the unproductiveness of transactions as a generator of losses, “Stigler—Coase” theorem and the logic of transaction cost minimization, and also the dogma about the priority of institutions providing low-cost transactions. The listed dogmas underlie the prevailing tradition of transactional analysis the frictional paradigm — which, in turn, is the foundation of neo-institutional theory. Therefore, the community of new institutionalists implicitly blocks attempts of a serious revision of this dogmatics. The purpose of the article is to substantiate a post-institutional (alternative to the dominant neo-institutional discourse) value-oriented perspective for the development of transactional studies based on rethinking and combining forgotten theoretical alternatives. Those are Commons’s theory of transactions, Wallis—North’s theory of transaction sector, theory of transaction benefits (T. Sandler, N. Komesar, T. Eggertsson) and Zajac—Olsen’s theory of transaction value. The article provides arguments and examples in favor of broader explanatory possibilities of value-oriented transactional analysis.


Sign in / Sign up

Export Citation Format

Share Document