scholarly journals Clinical Development and Manufacture of Chimeric Antigen Receptor T cells and the Role of Leukapheresis

2017 ◽  
Vol 13 (01) ◽  
pp. 28 ◽  
Author(s):  
Andrew Fesnak ◽  
Una O’Doherty ◽  
◽  

Adoptive transfer of chimeric antigen receptor (CAR) T cells is a powerful targeted immunotherapeutic technique. CAR T cells are manufactured by harvesting mononuclear cells, typically via leukapheresis from a patient’s blood, then activating, modifying the T cells to express a transgene encoding a tumour-specific CAR, and infusing the CAR T cells into the patient. Gene transfer is achieved through the use of retroviral or lentiviral vectors, although non-viral delivery systems are being investigated. This article discusses the challenges associated with each stage of this process. Despite the need for a consistent end product, there is inherent variability in cellular material obtained from critically ill patients who have been exposed to cytotoxic therapy. It is important to carefully select target antigens to maximise effect and minimise toxicity. Various types of CAR T cell toxicity have been documented: this includes “on target, on tumour”, “on target, off tumour” and “off target” toxicity. A growing body of clinical evidence supports the efficacy and safety of CAR T cell therapy; CAR T cells targeting CD19 in B cell leukemias are the best-studied therapy to date. However, providing personalised therapy on a large scale remains challenging; a future aim is to produce a universal “off the shelf” CAR T cell.

2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Gregory J. Kimmel ◽  
Frederick L. Locke ◽  
Philipp M. Altrock

Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective immunotherapy that relies on in vivo expansion of engineered CAR T cells, after lymphodepletion (LD) by chemotherapy. The quantitative laws underlying this expansion and subsequent tumour eradication remain unknown. We develop a mathematical model of T cell–tumour cell interactions and demonstrate that expansion can be explained by immune reconstitution dynamics after LD and competition among T cells. CAR T cells rapidly grow and engage tumour cells but experience an emerging growth rate disadvantage compared to normal T cells. Since tumour eradication is deterministically unstable in our model, we define cure as a stochastic event, which, even when likely, can occur at variable times. However, we show that variability in timing is largely determined by patient variability. While cure events impacted by these fluctuations occur early and are narrowly distributed, progression events occur late and are more widely distributed in time. We parameterized our model using population-level CAR T cell and tumour data over time and compare our predictions with progression-free survival rates. We find that therapy could be improved by optimizing the tumour-killing rate and the CAR T cells' ability to adapt, as quantified by their carrying capacity. Our tumour extinction model can be leveraged to examine why therapy works in some patients but not others, and to better understand the interplay of deterministic and stochastic effects on outcomes. For example, our model implies that LD before a second CAR T injection is necessary.


2019 ◽  
Vol 20 (6) ◽  
pp. 1283 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Clara Karches ◽  
Bruno Cadilha ◽  
Stefanie Lesch ◽  
Stefan Endres ◽  
...  

Effective adoptive T cell therapy (ACT) comprises the killing of cancer cells through the therapeutic use of transferred T cells. One of the main ACT approaches is chimeric antigen receptor (CAR) T cell therapy. CAR T cells mediate MHC-unrestricted tumor cell killing by enabling T cells to bind target cell surface antigens through a single-chain variable fragment (scFv) recognition domain. Upon engagement, CAR T cells form a non-classical immune synapse (IS), required for their effector function. These cells then mediate their anti-tumoral effects through the perforin and granzyme axis, the Fas and Fas ligand axis, as well as the release of cytokines to sensitize the tumor stroma. Their persistence in the host and functional outputs are tightly dependent on the receptor’s individual components—scFv, spacer domain, and costimulatory domains—and how said component functions converge to augment CAR T cell performance. In this review, we bring forth the successes and limitations of CAR T cell therapy. We delve further into the current understanding of how CAR T cells are designed to function, survive, and ultimately mediate their anti-tumoral effects.


Blood ◽  
2021 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Jessica R Flynn ◽  
Isabelle Rivière ◽  
Mithat Gonen ◽  
Xiuyan Wang ◽  
...  

CD19-targeted chimeric antigen receptor (CAR) T cell therapy has become a breakthrough treatment for patients with relapsed/refractory B acute lymphoblastic leukemia (B-ALL). However, despite the high initial response rate, the majority of adult patients with B-ALL progress after CD19 CAR T therapy. Data on the natural history, management, and outcome of adult B-ALL progressing after CD19 CAR T cells have not been described in detail. Herein, we report comprehensive data of 38 adult B-ALL patients who progressed after CD19 CAR T therapy at our institution. The median time to progression after CAR T therapy was 5.5 months. Median survival after post-CAR T progression was 7.4 months. A high disease burden at the time of CAR T cell infusion was significantly associated with risk of post-CAR T progression. Thirty patients (79%) received salvage treatment for post-CAR T disease progression and 13 patients (43%) achieved complete remission (CR), but remission duration was short. Notably, 7 of 12 patients (58.3%) achieved CR after blinatumomab and/or inotuzumab administered after post-CAR T failure. Multivariate analysis demonstrated longer remission duration from CAR T cells was associated with superior survival after progression following CAR T therapy. In conclusion, overall prognosis of adult B-ALL patients progressing after CD19 CAR T cells was poor though a subset of patients achieved sustained remissions to salvage treatments including blinatumomab, inotuzumab and re-infusion of CAR T cells. Novel therapeutic strategies are needed to reduce risk of progression after CAR T therapy and improve outcomes of these patients.


2020 ◽  
Author(s):  
Zhitao Ying ◽  
Ting He ◽  
Xiaopei Wang ◽  
Wen Zheng ◽  
Ningjing Lin ◽  
...  

Abstract Backgroud: The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumor. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo.Methods: We demonstrated the distribution of CAR-T cells in the absence of target cells or with target cells in the mice and the dynamic changes in the patient blood over time after infusion were deteced by qPCR and FACS. Results: CAR-T cells still proliferated in the mice without target cells and peaked at 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at 6 weeks. In the clinical trial, we found that CAR-T cells peaked at 7-21days after infusion and can last for as long as 510 days in the peripheral blood of patients. Simultaneously, mild side-effects were noted which can be effectively controlled within two months in these patients.Conclusions: CAR-T cells can expand themselves with or without target cells in mice. CAR-T cells can persistence for a long time in patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Jin ◽  
Wenyi Lu ◽  
Meng Zhang ◽  
Xia Xiong ◽  
Rui Sun ◽  
...  

Chimeric antigen receptor (CAR)-T cell therapy has become an important method for the treatment of hematological tumors. Lentiviruses are commonly used gene transfer vectors for preparing CAR-T cells, and the conditions for preparing CAR-T cells vary greatly. This study reported for the first time the influence of differences in infection temperature on the phenotype and function of produced CAR-T cells. Our results show that infection at 4 degrees produces the highest CAR-positive rate of T cells, infection at 37 degrees produces the fastest proliferation in CAR-T cells, and infection at 32 degrees produces CAR-T cells with the greatest proportion of naive cells and the lowest expression of immune checkpoints. Therefore, infection at 32 degrees is recommended to prepare CAR-T cells. CAR-T cells derived from infection at 32 degrees seem to have a balance between function and phenotype. Importantly, they have increased oncolytic ability. This research will help optimize the generation of CAR-T cells and improve the quality of CAR-T cell products.


Blood ◽  
2016 ◽  
Vol 127 (26) ◽  
pp. 3321-3330 ◽  
Author(s):  
Jennifer N. Brudno ◽  
James N. Kochenderfer

Abstract Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2019 ◽  
Vol 14 (1) ◽  
pp. 60-69
Author(s):  
Manxue Fu ◽  
Liling Tang

Background: Chimeric Antigen Receptor (CAR) T cell immunotherapy, as an innovative method for tumor immunotherapy, acquires unprecedented clinical outcomes. Genetic modification not only provides T cells with the antigen-binding function but also endows T cells with better immunological functions both in solid and hematological cancer. However, the CAR T cell therapy is not perfect because of several reasons, such as tumor immune microenvironment, and autologous limiting factors of CAR T cells. Moreover, the safety of CAR T cells should be improved.Objective:Recently many patents and publications have reported the importance of CAR T cell immunotherapy. Based on the patents about CAR T cell immunotherapy, we conclude some methods for designing the CAR which can provide information to readers.Methods:In this review, we collect recent patents and publications, summarize some specific antigens for oncotherapy from patents and enumerate some approaches to conquering immunosuppression and reinforcing the immune response of CAR T cells. We also sum up some strategies for improving the safety of CAR T cell immunotherapy.Results:CAR T cell immunotherapy as a neotype cellular immunotherapy has been proved effective in oncotherapy and authorized by FDA. Improvements in CAR designing enhance functions of CAR T cells.Conclusion:This review, summarizing antigens and approaches to overcome defects of CAR T cell immunotherapy from patents and publications, might contribute to a broad readership.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yi Zhang

Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document