Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation

2020 ◽  
Vol 43 (6) ◽  
pp. 443-451
Author(s):  
Jun-Seong Lee ◽  
◽  
Yang-Soo Kim ◽  
Min-Gul Kim ◽  
Jung-Soo Kim ◽  
...  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bünyamin Aygün ◽  
Erdem Şakar ◽  
Abdulhalik Karabulut ◽  
Bünyamin Alım ◽  
Mohammed I. Sayyed ◽  
...  

AbstractIn this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


Author(s):  
Hammam Oktajianto ◽  
Evi Setiawati

Thyroid radiotherapy is a cancer therapy that is treated by giving radioactive I-131 in Thyroid gland. This cancer is at the ninth from ten of common malignant cancer. A man has higher risk to get Thyroid cancer than a woman has. This organ is lain near human neck. This research aim was to simulate particle track of radiation I-131 and determine an absorbed dose and effective dose in Thyroid and other organs around Thyroid such as Brain, Lung and Cervical vertebrae. The simulation and calculation used Monte Carlo method operated by MCNPX software. Geometry of Thyroid and other organs used ORNL MIRD phantom geometry. From the results, it shown that particle track of radiation was distributed at Thyroid while several particles radiated other organs. The absorbed dose in Thyroid and other organs increased every rising activity of I-131 used, but the absorbed dose in other organs was less than in Thyroid. Radiation effect for damage cancer in Thyroid was shown by an effective dose which it increased every rising activity of I-131 used and the maximum effective dose was at 200 mCi activity of I-131. Although the effective dose in Thyroid increased, the effective dose in other organs like Brain, Lung and Cervical vertebrae was still less than in Thyroid so that the use of I-131 each activity did not really influence other organs around Thyroid.  


2018 ◽  
Vol 18 (02) ◽  
pp. 191-197
Author(s):  
Masoumeh Hoseinnezhad ◽  
Mohammad Mahdavi ◽  
Seyyed R. M. Mahdavi ◽  
Mobarake Mahdavizade

AbstractPurposeThe purpose of this study was to determine the dose enhancement factor (DEF) of gold nanoparticles in a dosimeter gel and construct percentage depth dose curves, using the Optical CT system and the Monte Carlo simulation model, to determine the effect of increasing the dose caused by increasing the concentration of gold nanoparticles at depths in the gel.Materials and methodsThe Magic-f Gel was made based on the relevant protocol in the physics lab. To determine the amount of the increase in the absorbed dose, the gold nanoparticles were added to the gel and irradiated. An increase in the dose after adding nanoparticles to the gel vials was estimated both with the Optical CT system and by the Monte Carlo simulation method.ResultsDose enhancement curves for doses of 2, 4 and 6 Gy were prepared for gel vials without adding nanoparticles, and nanoparticle gels at concentrations 0·17, 3 and 6 mM. Also, the DEF was estimated. For the 0·17 mM molar gel, the DEF for 2, 4 and 6 Gy was 0·7, 0·743 and 0·801, respectively. For the 3 mM gel, it was 1·98, 2·5 and 2·2, and for the 6 mM gel, it was 37·4, 4·24 and 4·71, respectively.ConclusionThe enhancement of the dose after adding gold nanoparticles was confirmed both by experimental data and by simulation data.


2010 ◽  
Vol 22 (2) ◽  
pp. 214-228
Author(s):  
Sabungan Halomoan Hutapea ◽  
Rosita Sinaga

The development of metropolitan cihJ as Jakarta for years is high, thus the demand Jo transportationservices. Tcui is one of mode transportation which is mostly used by middle to high class people. Theproblem is, sometimes many people are wasting time for waiting empty taxi, mean while manyempty taxi, are searching for the passenger.The objective of this simulation model is to direct the taxi, movement to get passenger with the help ofi~b "based software. So then, there is information to direct the taxi, mavement to choose the right Wat}to get passenger with high possibilihJ rate of passenger.The taxi, driver is equipped by GPS that will find out the coordinate position data of geographical. Toinput the data such as position of start-finish and arrival time of passenger it can be done by cellμlarphone then data will be transmit to ~bsite.Using simulation approaching, a Monte Carlo simulation model can be build that will optimize taxi,driver to find passenger. This modeling will be able to estimate the possibilihj of passenger arrival anddistribution of taxi, cars in one area. The comparison of simulation without modeling resuled intincreament of some aspects, such as increment of delivetJ services increase to 81.48%, searching timeand waiting time become 4.12% and 6.45% respectively.Keyword: taxi, movement, waiting time, travel time, Monte-Carlo Simulation


2020 ◽  
Vol 189 (1) ◽  
pp. 76-88
Author(s):  
Shiva Zarifi ◽  
Hadi Taleshi Ahangari ◽  
Sayyed Bijan Jia ◽  
Mohammad Ali Tajik-Mansoury ◽  
Milad Najafzadeh

Abstract To validate the GATE Monte Carlo simulation code and to investigate the lateral scattering of proton pencil beams in the major body tissue elements in the therapeutic energy range. In this study, GATE Monte Carlo simulation code was used to compute absorbed dose and fluence of protons in a water cubic phantom for the clinical energy range. To apply the suitable physics model for simulation, different physics lists were investigated. The present research also investigated the optimal value of the water ionization potential as a simulation parameter. Thereafter, the lateral beam profile of proton pencil beams were simulated at different energies and depths in body tissue elements. The range results obtained using the QGSP_BIC_EMY physics showed the best compatibility with the NIST database data. Moreover, it was found that the 76 eV is the optimal value for the water ionization potential. In the next step, it was shown that the beam halo can be described by adding a supplementary Gaussian function to the standard single-Gaussian model, which currently is used by treatment planning systems (TPS).


2019 ◽  
Vol 50 (1) ◽  
pp. S6
Author(s):  
Sang-Keun Woo ◽  
Wook Kim ◽  
Chul-Hee Lee ◽  
Hwunjae Lee ◽  
Kyo Chul Lee ◽  
...  

2020 ◽  
Vol 26 (1) ◽  
pp. 31-44
Author(s):  
Hassan Al Kanti ◽  
O. El Hajjaji ◽  
T. El Bardouni

AbstractThe present study aims to calculate a new database of conversion coefficients from fluence and air Kerma to personal dose equivalent in two terms: absorbed dose and Kerma-approximations. In this work, we propose a new equation to perform an analytical fit of our Monte Carlo (MC) calculated conversion coefficients for photons for different angles. Also, we have calculated the conversion coefficients using the EGSnrc code. The conversion coefficients have been calculated for beams of monoenergetic photons from 0.015 to 10 MeV, incident on phantom ICRU for angles of incidence from 0° to a 75° in steps of 15°. Our computed values agree well when compared with those published for the ICRU 57 in Kerma-approximations with statistical uncertainties in the calculation around 2%. We can conclude from this work that the analytical approach is successful and powerful such as Monte Carlo methods to calculate the operational quantities.


Sign in / Sign up

Export Citation Format

Share Document