scholarly journals MODELING OF THE MANUFACTURING SYSTEMS STATE IN THE CONDITIONS OF THE LEAN PRODUCTION

2021 ◽  
Vol 2021 (2) ◽  
pp. 4408-4413
Author(s):  
KONSTANTIN DYADYURA ◽  
◽  
LIUDMYLA HREBENYK ◽  
TIBOR KRENICKY ◽  
TADEUSZ ZABOROWSKI ◽  
...  

This article investigates the hierarchy of the manufacturing system, which consists of a set of interrelated processes aimed at converting information, knowledge, energy, materials, and other resources into value for the consumer based on the principles of lean production. Modern manufacturing systems are becoming more and more complex to manage. The problems that need to be solved are associated with a significant number of time-varying parameters, large time delays, high non-linearity of processes, and a complex relationship between input and output parameters. Depending on the parameters of internal components and characteristics of external conditions, the state of manufacturing systems can change in an unpredictable manner. The paper considers many types of discrete states in which the system can be. The estimation of the probability of finding the manufacturing system in any of the given states was carried out using discrete Markov analysis. The article also presents the results of studies of possible transitions between states in which the production system is presented in the form of a transition matrix.

2000 ◽  
Author(s):  
Qing Ke Yuan ◽  
Xin Chen

Abstract For adapting the demands of the rapid changing and enhancing the competing capability of enterprise in the international market, various modern manufacturing systems have been put forward, which are aimed at various specifications, perfect performance and high quality, low production cost and short manufacturing cycle of products, virtual manufacturing system (VMS) has been emerged as the times require, which is effective technology to meet the challenge of 21 century’s manufacturing industries. Based on analyzing modern manufacturing systems, according to the characteristics and requirement of VMS, in this paper, the architecture, the key technologies and the implement way of VMS were explored, and development environment for VMS was put forward, which is a powerful tool for building VMS.


Author(s):  
Sagar Kamarthi ◽  
Abe Zeid ◽  
Yusuf Ozbek

Every machine or equipment in a manufacturing facility is subject to failure due to deterioration based on cumulative wear, crack growth, erosion, etc. This failure will cause production losses and delays resulting in high costs. As the modern manufacturing systems are getting more and more complex, intelligent maintenance schemes must replace the old labor intensive planned maintenance systems to ensure that equipment continues to function. If the maintenance decision is based on the state of the system rather than its age, this leads to the choice of a Condition Based Maintenance (CBM) policy to prevent catastrophic unexpected machine breakdowns and increase the availability of individual machines, but it also introduces randomness into the manufacturing operation. This paper presents a Q-Learning model to dynamically group maintenance actions on different machines and execute them simultaneously, so that one can reduce maintenance cost and increase the efficiency of the manufacturing system.


2021 ◽  
Vol 13 (10) ◽  
pp. 5495
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Roxana Ștefănescu ◽  
Cristian Uță ◽  
Irina Dijmărescu

With growing evidence of the operational performance of cyber-physical manufacturing systems, there is a pivotal need for comprehending sustainable, smart, and sensing technologies underpinning data-driven decision-making processes. In this research, previous findings were cumulated showing that cyber-physical production networks operate automatically and smoothly with artificial intelligence-based decision-making algorithms in a sustainable manner and contribute to the literature by indicating that sustainable Internet of Things-based manufacturing systems function in an automated, robust, and flexible manner. Throughout October 2020 and April 2021, a quantitative literature review of the Web of Science, Scopus, and ProQuest databases was performed, with search terms including “Internet of Things-based real-time production logistics”, “sustainable smart manufacturing”, “cyber-physical production system”, “industrial big data”, “sustainable organizational performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of Things-based manufacturing system”. As research published between 2018 and 2021 was inspected, and only 426 articles satisfied the eligibility criteria. By taking out controversial or ambiguous findings (insufficient/irrelevant data), outcomes unsubstantiated by replication, too general material, or studies with nearly identical titles, we selected 174 mainly empirical sources. Further developments should entail how cyber-physical production networks and Internet of Things-based real-time production logistics, by use of cognitive decision-making algorithms, enable the advancement of data-driven sustainable smart manufacturing.


2019 ◽  
Vol 957 ◽  
pp. 195-202 ◽  
Author(s):  
Elizaveta Gromova

With the onset of the Fourth Industrial Revolution, the business environment becomes inherent in changes that occur with maximum speed, as well as characterized by the systemic nature of the consequences. One of them is the transformation of operational management models in industrial enterprises. The modern manufacturing system should focus not only on speed of response and flexibility, but also on the cost and quality of products. Integration of effective models: agile manufacturing, quick response manufacturing and lean production, in order to extract the best from them is proposed. The purpose of this study is to analyze this flexible manufacturing system and to relate it to the current state of the Russian industrial development. Theoretical and practical aspects of this model are presented. The examples of the flexible models introduction in the Russian industrial sector is allocated. The conclusion about the necessity of the flexible manufacturing systems implementation for the Russian industrial development is drawn.


10.6036/9917 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 455-459
Author(s):  
MAHDI NADERI ◽  
ANTONIO FERNÁNDEZ ULLOA ◽  
JOSÉ ENRIQUE ARES GÓMEZ ◽  
GUSTAVO PELÁEZ LOURIDO

Despite the growing importance that is being given to the concepts of sustainability in many areas, not only in industry but also in the economy and public opinion in general, until now, most research has focused, practically, on the analysis of the concepts, but has not addressed, in a comprehensive way, its impact in decision making probably due to the complex relations of interdependence between its different aspects. In this context, MAPSAM (Methodology for the Assessment of Sustainability in Manufacturing Processes and Systems) was created to help the decision-making process, allowing a conscious and transparent assessment by administrators and managers at the different levels of the structure of companies and organisations. This article explains its development and application in a "job shop" type manufacturing system with an approach that allows the integration of economic, environmental and social criteria. MAPSAM is based on the use of various techniques and tools to quantify the importance of each aspect of sustainability and it has been applied in other production environments, being implemented in different systems, analysing their ease of use and evaluating their behaviour. The objective is to show how it helps to make operational, tactical and strategic decisions in the management on these type of manufacturing companies and, specifically, in this contribution we want to highlight its versatility and applicability, by validating it in a certain type of layout. With this new application, MAPSAM increases its possibilities as an innovative instrument that allows companies to make conscious and sustainable decisions in order to be more efficient, fair, supportive and respectful of the environment. Keywords: Manufacturing System, Simulation, Decision Support, Sustainable Production, Decision-Making


Author(s):  
Xi Vincent Wang ◽  
Lihui Wang

In recent years, Cloud manufacturing has become a new research trend in manufacturing systems leading to the next generation of production paradigm. However, the interoperability issue still requires more research due to the heterogeneous environment caused by multiple Cloud services and applications developed in different platforms and languages. Therefore, this research aims to combat the interoperability issue in Cloud Manufacturing System. During implementation, the industrial users, especially Small- and Medium-sized Enterprises (SMEs), are normally short of budget for hardware and software investment due to financial stresses, but they are facing multiple challenges required by customers at the same time including security requirements, safety regulations. Therefore in this research work, the proposed Cloud manufacturing system is specifically tailored for SMEs.


2014 ◽  
Vol 556-562 ◽  
pp. 6034-6037
Author(s):  
Dong Man Yu ◽  
Zhi Hua Gao ◽  
Xiao Jing Li ◽  
Di Wang

Reconfigurable manufacturing system is essential for sustainable change, rapid response ability important characteristics, research, development and application of manufacturing system. The main architecture and major characteristics of reconfigurable manufacturing systems is explored. Normally, the quality of RMS can be evaluated by several factors. Firstly, the gross cost of production and reconstruction should be less. Secondly, The time of design and manufacture (ascent time) should be shorter. Thirdly, the utilization ratio of existed resource should reach to the utmost. Finally, the cargo stream planning in common space should keep in optimal condition. At last, The author give an example to shown the RMS, the hydraulic integrated package for a gearshift device in automobile, are mentioned to compare and analyze.


2017 ◽  
Vol 10 (2) ◽  
pp. 41
Author(s):  
Behnam Sahranavard ◽  
Ali Asghar Kazemi

The nations take various strategies in exposure to different developments and phenomena and impact on foreign and internal policies of countries in international scene proportional to their internal and external conditions and rivals and at international arena. What US implemented after September 11 Event and targeted accusation finger toward Taliban and Al-Qaeda in Afghanistan is deemed as a type of strategy that has occurred in created nostalgic climate together with hasty decision making and negligence to domestic issues in Afghan Community while their output was to take different and even paradoxical strategies in this crisis-stricken region since 1980s. In this article that has been written in order to analyze US Post September- 11 Strategies in Afghanistan this basic question will be answered that how changes in US macro policies influenced in orientation of diplomacy of this country and why this country has adapted different policies in occupation of Afghanistan. Afterwards, it is deduced according to the given findings from librarian data collection method that the constant changes in US strategy in Afghanistan were due to overlooking of domestic issues and historic, ethnic, cultural, political, and ideological complexities of this country that has resulted in degradation of US position in world scene and its failure in suppression of Taliban.This article has been excerpted from my PhD treatise under title of ‘The role of United States in the regional crisis (e.g. Afghan and Iraqi crises) and the rise of revolutionary and radicalism on the emergence of international terrorism’.


Author(s):  
Abdul Salam Khan ◽  
Khawer Naeem ◽  
Raza Ullah Khan

An abrupt change requires a robust and flexible response from a manufacturing system. Dedicated Manufacturing System (DMS) has been a long practiced taxonomy for mass production and minimum varieties. In contrast, Flexible Manufacturing System (FMS) has been introduced for responding to quantity as well as variety issues. This study considers both production taxonomics by using a multi objective model of cost and time. An Integer Linear Programming (ILP) formulation is presented and subsequently validated. The analysis procedure is administered in two phases. In the first phase, comparison of production cost and process time in DMS and FMS is presented. The model is implemented by using an exact solution approach and results show that FMS is a viable option, compared to DMS, according to the criteria of cost, time, and productivity. In the second phase, sensitivity analysis is performed by using several FMS (n) and the impact of cells selection on the performance of system is studied. It is concluded that n=1 (single cell-based FMS) is more relevant for cost minimization; however, n = 6 is a suitable candidate for producing more quantity in given time horizon (process time minimization). Lastly, key findings are reported, and future research avenues are provided.


2018 ◽  
Vol 38 (12) ◽  
pp. 2313-2343 ◽  
Author(s):  
Daniel R. Eyers ◽  
Andrew T. Potter ◽  
Jonathan Gosling ◽  
Mohamed M. Naim

Purpose Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice. Design/methodology/approach This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand. Findings The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems. Originality/value Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems.


Sign in / Sign up

Export Citation Format

Share Document