scholarly journals Tactics of Two-Stage IOL Implantation in Difficult Refractive Cases

2021 ◽  
Vol 18 (3) ◽  
pp. 415-421
Author(s):  
A. A. Kasyanov

In a number of complex refractive cases, the achievement of an accurate refractive result cannot be guaranteed. Simultaneous implantation of a toric or multifocal IOL for the correction of complex ametropias may be accompanied by a significant deviation from the target refraction. The tactics of two-stage implantation with the usage of an additional Sulcoflex IOL for the final correction of astigmatism and possible residual spherical ametropia allows achieving emmetropia. In our study, this method was used in 15 patients with difficult refractive cases. Toric, multifocal, and multifocal toric Sulcoflex IOL were used. Implantation of all Sulcoflex modifications was performed through a 2.4 mm temporal incision using wound assisted technology. In cases of high degree hypermetropia, preventive iridectomy was performed using a 23G vitrectome. The target refraction was achieved in the entire observation group. In the postoperative period, no significant level of ophthalmic hypertension was registered. No cases of introlens opacification, iridocyclitis, or rotational instability were registered either.The method of two-stage IOL implantation allows achieving the target refraction in difficult refractive situations with almost guaranteed accuracy. The calculation method provides good predictability of the refractive result. This technology significantly expands the indications for intraocular correction using toric and multifocal IOL, as well as the limits of correction of high degree astigmatism. Our Sulcoflex IOL implantation experience has shown their high efficiency and safety.

Solar Cells ◽  
1989 ◽  
Vol 27 (1-4) ◽  
pp. 299-306 ◽  
Author(s):  
Bulent M. Basol ◽  
Vijay K. Kapur ◽  
Richard C. Kullberg

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayoung Choi ◽  
Hyunggoo Kwon ◽  
Sohee Jeon

AbstractThe accuracy of intraocular lens (IOL) calculations is suboptimal for long or short eyes, which results in a low visual quality after multifocal IOL implantation. The purpose of the present study is to evaluate the accuracy of IOL formulas (Barrett Universal II, SRK/T, Holladay 1, Hoffer Q, and Haigis) for the Acrysof IQ Panoptix TFNT IOL (Alcon Laboratories, Inc, Fort Worth, Texas, United States) implantation based on the axial length (AXL) from a large cohort of 2018 cases and identify the factors that are associated with a high mean absolute error (MAE). The Barrett Universal II showed the lowest MAE in the normal AXL group (0.30 ± 0.23), whereas the Holladay 1 and Hoffer Q showed the lowest MAE in the short AXL group (0.32 ± 0.22 D and 0.32 ± 0.21 D, respectively). The Haigis showed the lowest MAE in the long AXL group (0.24 ± 0.19 D). The Barrett Universal II did not perform well in short AXL eyes with higher astigmatism (P = 0.013), wider white-to-white (WTW; P < 0.001), and shorter AXL (P = 0.016). Study results suggest that the Barrett Universal II performed best for the TFNT IOL in the overall study population, except for the eyes with short AXL, particularly when the eyes had higher astigmatism, wider WTW, and shorter AXL.


2012 ◽  
Author(s):  
Kyosuke Nakano ◽  
Mingyao Xu ◽  
Hirokazu Takayama ◽  
Akihiro Tsuchiya ◽  
Motokazu Saito

2020 ◽  
Author(s):  
Da young Shin ◽  
Ho Sik Hwang ◽  
Hyun Seung Kim ◽  
Man Soo Kim ◽  
Eun Chul Kim

Abstract Background: To analyze and compare the clinical results of toric intraocular lens (IOL) and monofocal IOL implantation when the target refraction value is determined -3 diopter (D) in cataract patients with corneal astigmatism >1.5 diopters (D).Methods: We performed a retrospective chart review for patients with corneal astigmatism >1.5D who underwent cataract surgery and their target refraction is determined -3D. 100 eyes (100 patients; monofocal IOL, 60; toric IOL, 40) were enrolled in the current study. Near and distant uncorrected visual acuity (UCVA), corrected VA, spherical equivalent and refractive, corneal astigmatism were evaluated before and after surgery.Results: The near UCVA of the toric IOL group (0.26±0.33) after cataract surgery was significantly better than that of the monofocal IOL group (0.48±0.32) (p=0.030). The distant UCVA of the toric IOL group (0.38 ± 0.14) was also significantly better than that of the monofocal IOL group (0.55 ± 0.22) (p = 0.026). There were no significant intergroup differences in postoperative best-corrected visual acuity (p = 0.710) and mean spherical equivalent (p = 0.465). In the toric IOL group, postoperative refractive astigmatism was -0.80 ± 0.46D and postoperative corneal astigmatism was -1.50 ± 0.62D, whereas the corresponding values in the monofocal IOL group were -1.65 ± 0.77D and -1.45 ± 0.64D; residual refractive astigmatism was significantly lower with toric IOL implantation compared with monofocal IOL implantation (p = 0.001). Conclusions: When myopic refraction such as -3D was determined as the target power in patients with corneal astigmatism, toric IOL implantation led to excellent improvement in both near and distant UCVA.


Author(s):  
Miguel Steiner ◽  
Markus Reiher

AbstractAutonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. Graphical Abstract


2021 ◽  
Author(s):  
Xueye Chen ◽  
Yaolong Zhang

Abstract Microfluidic technology has great advantages in the precise manipulation of micro and nano particles, and the collection method of micro and nano particles based on ultrasonic standing waves has attracted much attention for its high efficiency and simplicity of structure. This paper proposes a two-stage particle separation channel using ultrasound. In the microfluidic channel, two different sound pressure regions are used to achieve the separation of particles with positive acoustic contrast factors. Through numerical simulation, the performance of three common piezoelectric substrate materials was compared qualitatively and quantitatively, and it was found that the output sound pressure intensity of 128°YX-LiNbO3 was high and the output was stable. At the same time, the influence of the number of electrode pairs of the interdigital transducer and the electrode voltage on the output sound wave is studied. Finally, 15 pairs of electrode pairs are selected, and the electrode voltages of the two sound pressure regions are 2.0V and 3.0V respectively. After selecting the corresponding parameters, the separation process was numerically simulated, and the separation of three kinds of particles was successfully achieved. This work has laid a certain theoretical foundation for rapid disease diagnosis and real-time monitoring of the environment in practical applications.


Sign in / Sign up

Export Citation Format

Share Document