scholarly journals Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

Author(s):  
Juni Ekowati ◽  
Suko Hardjono ◽  
Iwan Sahrial Hamid

BACKGROUND<br />Many tumors express on their receptor tyrosine kinases vascular endothelial<br />growth factor activity associated with angiogenesis. Inhibition of<br />angiogenesis through reduction of tyrosine kinase activity is a promising<br />strategy for cancer therapy. The present study aimed to determine the<br />mechanism and potency of ethyl p-methoxycinnamate (EPMC) isolated<br />from Kaempferia galanga as angiogenesis inhibitor.<br />METHODS<br />A laboratory experimental study was conducted using chorio-allantoic<br />membranes (CAMs) of nine-day old chicken eggs induced by 60ng basic<br />fibroblast growth factor (bFGF). Ethyl p-methoxycinnamate (EPMC) potency<br />was determined at dosages of 30, 60, 90 and 120 μg and compared with<br />celecoxib 60 μg as reference drug and one negative bFGF-induced control<br />group. Neovascularization and endothelial cell count in CAM blood vessels<br />were evaluated. To predict the antiangiogenic mechanism of EPMC, a<br />docking study was performed with the Molegro Virtual Docker program on<br />tyrosine kinase as receptor (PDB 1XKK).<br />RESULTS<br />Angiogenesis stimulation by bFGF was prevented significantly (p&lt;0.05)<br />by EPMC at dosages of 30, 60, 90 and 120 μg and this activity was dose<br />dependent. Molecular docking showed interaction between EPMC functional<br />groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790,<br />Gln791 and Ala743. There was an association between EPMC<br />antiangiogenic activity and docking study results.<br />CONCLUSIONS<br />Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through<br />interaction with tyrosine kinase. EPMC could be a promising therapeutic<br />agent for treatment of angiogenesis-related diseases.

2001 ◽  
Vol 21 (14) ◽  
pp. 4647-4655 ◽  
Author(s):  
Iiro Rajantie ◽  
Niklas Ekman ◽  
Kristiina Iljin ◽  
Elena Arighi ◽  
Yuji Gunji ◽  
...  

ABSTRACT The Bmx gene, a member of the Tec tyrosine kinase gene family, is known to be expressed in subsets of hematopoietic and endothelial cells. In this study, mice were generated in which the first coding exon of the Bmx gene was replaced with thelacZ reporter gene by a knock-in strategy. The homozygous mice lacking Bmx activity were fertile and had a normal life span without an obvious phenotype. Staining of their tissues using β-galactosidase substrate to assess the sites ofBmx expression revealed strong signals in the endothelial cells of large arteries and in the endocardium starting between days 10.5 and 12.5 of embryogenesis and continuing in adult mice, while the venular endothelium showed a weak signal only in the superior and inferior venae cavae. Of the five known endothelial receptor tyrosine kinases tested, activated Tie-2 induced tyrosyl phosphorylation of the Bmx protein and both Tie-2 and vascular endothelial growth factor receptor 1 (VEGFR-1) stimulated Bmx tyrosine kinase activity. Thus, the Bmx tyrosine kinase has a redundant role in arterial endothelial signal transduction downstream of the Tie-2 and VEGFR-1 growth factor receptors.


2020 ◽  
Vol 17 (5) ◽  
pp. 585-615 ◽  
Author(s):  
Nikhil S. Sakle ◽  
Shweta A. More ◽  
Sachin A. Dhawale ◽  
Santosh N. Mokale

Background: Cancer is a complex disease involving genetic and epigenetic alteration that allows cells to escape normal homeostasis. Kinases play a crucial role in signaling pathways that regulate cell functions. Deregulation of kinases leads to a variety of pathological changes, activating cancer cell proliferation and metastases. The molecular mechanism of cancer is complex and the dysregulation of tyrosine kinases like Anaplastic Lymphoma Kinase (ALK), Bcr-Abl (Fusion gene found in patient with Chronic Myelogenous Leukemia (CML), JAK (Janus Activated Kinase), Src Family Kinases (SFKs), ALK (Anaplastic lymphoma Kinase), c-MET (Mesenchymal- Epithelial Transition), EGFR (Epidermal Growth Factor receptor), PDGFR (Platelet-Derived Growth Factor Receptor), RET (Rearranged during Transfection) and VEGFR (Vascular Endothelial Growth Factor Receptor) plays major role in the process of carcinogenesis. Recently, kinase inhibitors have overcome many problems of traditional cancer chemotherapy as they effectively separate out normal, non-cancer cells as well as rapidly multiplying cancer cells. Methods: Electronic databases were searched to explore the small molecule tyrosine kinases by polyphenols with the help of docking study (Glide-7.6 program interfaced with Maestro-v11.3 of Schrödinger 2017) to show the binding energies of polyphenols inhibitor with different tyrosine kinases in order to differentiate between the targets. Results: From the literature survey, it was observed that the number of polyphenols derived from natural sources alters the expression and signaling cascade of tyrosine kinase in various tumor models. Therefore, the development of polyphenols as a tyrosine kinase inhibitor against targeted proteins is regarded as an upcoming trend for chemoprevention. Conclusion: In this review, we have discussed the role of polyphenols as chemoreceptive which will help in future for the development and discovery of novel semisynthetic anticancer agents coupled with polyphenols.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 184
Author(s):  
Kalpana K. Bhanumathy ◽  
Amrutha Balagopal ◽  
Frederick S. Vizeacoumar ◽  
Franco J. Vizeacoumar ◽  
Andrew Freywald ◽  
...  

Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell–cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal–epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.


2021 ◽  
Vol 157 ◽  
pp. 103186
Author(s):  
Avash Das ◽  
Somnath Mahapatra ◽  
Dhrubajyoti Bandyopadhyay ◽  
Santanu Samanta ◽  
Sandipan Chakraborty ◽  
...  

Science ◽  
1992 ◽  
Vol 255 (5047) ◽  
pp. 989-991 ◽  
Author(s):  
C de Vries ◽  
J. Escobedo ◽  
H Ueno ◽  
K Houck ◽  
N Ferrara ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1365-1372 ◽  
Author(s):  
Stefania Mitola ◽  
Silvano Sozzani ◽  
Walter Luini ◽  
Luca Primo ◽  
Alessandro Borsatti ◽  
...  

Human immunodeficiency virus-1 (HIV-1) Tat protein can be released by infected cells and activates mesenchymal cells. Among these, monocytes respond to Tat by migrating into tissues and releasing inflammatory mediators. In the present study, we have examined the molecular mechanism of monocyte activation by Tat, showing that this viral protein signals inside the cells through the tyrosine kinase receptor for vascular endothelial growth factor encoded by fms-like tyrosine kinase gene (VEGFR-1/Flt-1). Subnanomolar concentrations of Tat induced monocyte chemotaxis, which was inhibited by cell preincubation with vascular-endothelial growth factor-A (VEGF-A). This desensitisation was specific for VEGF-A, because it not was observed with FMLP. In addition, the soluble form of VEGFR-1 specifically inhibited polarization and migration induced by Tat and VEGF-A, thus confirming the common use of this receptor. Binding studies performed at equilibrium by using radiolabeled Tat showed that monocytes expressed a unique class of binding site, with a kd of approximately 0.2 nmol/L. The binding of radiolabeled Tat to monocyte surface and the cross-linking to a protein of 150 kD was inhibited specifically by an excess of cold Tat or VEGF-A. Western blot analysis with an antibody anti–VEGFR-1/Flt-1 performed on monocyte phosphoproteins immunoprecipitated by an monoclonal antibody antiphosphotyrosine showed that Tat induced a rapid phosphorylation in tyrosine residue of the 150-kD VEGFR-1/Flt-1. Taken together, these results suggest that biologic activities of HIV-1 Tat in human monocytes may, at least in part, be elicited by activation of VEGFR-1/Flt-1.


Sign in / Sign up

Export Citation Format

Share Document