scholarly journals Correlation between Optical and Structural Properties of Chemically Deposited CdS Thin Films

Author(s):  
Raghad Y. Mohammed ◽  
S. Abduol ◽  
Ali M. Mousa

Polycrystalline Cadmium sulfide (CdS) films were deposited onto Corning glass substrates from alkaline solutions containing CdCl2, KOH, Na3C6H5O7 and CS(NH2)2 at different deposition times (10, 20, 30, 40 and 50 min), different bath temperatures and different concentration of the reactants. A comparative study was performed out on thin film via optical transmission and X-ray diffraction (XRD) measurements which reveal that the deposition time has a profound influence on the growth rate and band gap of the deposited layers. Diffraction data are used to evaluate the lattice parameter, grain size, average strain, number of crystallites per unit area and dislocation density in the film are calculated.

Author(s):  
Raghad Y. Mohammed ◽  
S. Abduol ◽  
Ali M. Mousa

Polycrystalline Cadmium sulfide (CdS) films were deposited onto Corning glass substrates from alkaline solutions containing CdCl2, KOH, Na3C6H5O7 and CS(NH2)2 at different deposition times (10, 20, 30, 40 and 50 min), bath temperatures (80 ±2 °C) and different concentration of the reactants. A comparative study was performed out on thin film via optical transmission and X-ray diffraction (XRD) measurements. The results which reveal that the deposition time has a profound influence on the growth rate and band gap of the deposited layers. Diffraction data was used to evaluate the lattice parameter, grain size, average strain, number of crystallites per unit area and dislocation density in the film are calculated.


Author(s):  
Fatma Salamon

CdS thin films were prepared by chemical bath deposition technique (CBD) onto the glass substrates at different conditions of preparation. The obtained samples are studied by X-Ray diffraction (XRD). The XRD patterns of CdS samples revealed the formation with a hexagonal crystal structure P36mc, and the clear effect of the concentration of thiourea, cadmium sulfide, NaOH, time and temperature deposition, and annealing temperature, on the structure of the prepared thin films. through the study, we found that the samples have preferred orientation along [002], also the thickness of thin films decrease with deposition time after certain value, with the appearance of free cadmium. It has been found that the 200°C is the best temperature for annealing to improve the other structural and physical properties of films.


2009 ◽  
Vol 5 ◽  
pp. 223-230 ◽  
Author(s):  
P. Suresh Kumar ◽  
M. Yogeshwari ◽  
A. Dhayal Raj ◽  
D. Mangalaraj ◽  
D. Nataraj ◽  
...  

ZnO nanorods (NRs) have been synthesized by a chemical bath deposition (CBD) method on simple glass substrate that had been precoated by successive ionic layer absorption and reaction (SILAR) with a thin ZnO film. ZnO NR array was obtained by using zinc acetate and hexamethylenetetramine as aqueous solutions at optimized pH concentration and deposition time. X-ray diffraction (XRD) and SEM analysis were used to confirm the growth of ZnO nanorods. The pH and deposition time of the solution was found to influence the growth behavior of ZnO NRs. PL analysis also reflected the growth behavior of ZnO NRs.


1996 ◽  
Vol 426 ◽  
Author(s):  
Yuming Zhu ◽  
Dull Mao ◽  
D. L. Williamson ◽  
J. U. Trefny

AbstractChemical-bath-deposited CdS thin films from an ammonia-thiourea solution have been studied by x-ray diffraction, surface profilometry, ellipsometry, and other techniques. The compactness of the CdS films, structural properties of the films, and the growth mechanism have been investigated. For the deposition conditions used, we found that the film compactness reaches its maximum at a deposition time of 35 minutes. Films grown at longer deposition times are less compact, consistent with the CdS duplex layer structure proposed previously. This transition from compact layer growth to porous layer growth is important for depositing CdS films in solar cell applications. Based on x-ray diffraction (XRD) studies, we were able to determine the crystal phase, lattice constant, and other structural properties.


2017 ◽  
Vol 866 ◽  
pp. 318-321 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Adisorn Buranawong

Titanium aluminum nitride (TiAlN) thin films were deposited by reactive DC magnetron co-sputtering technique on Si substrate. The effect of deposition time on the structure of the TiAlN films was investigated. The crystal structure, surface morphology, thickness and elemental composition were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) technique, respectively. The results showed that, all the as-deposited films were formed as a (Ti,Al)N solid solution. The as-deposited thin films exhibited a nanostructure with a crystallite size of less than 30 nm. The film thickness increase from 115 nm to 329 nm, while the lattice parameter decrease from 4.206 Å to 4.196 Å, with increasing of the deposition time. Cross section analysis by FE-SEM showed compact columnar and dense morphology as a result of increasing the deposition time. The elemental composition of the as-deposited films varied with the deposition time.


2021 ◽  
Author(s):  
Haleh Kangarlou ◽  
Somayeh Asgary

Abstract Mercury sulfide films were deposited on amorphous glass substrates from aqueous solutions by chemical bath deposition method (CBD) at same temperature and different deposition times. Produced layers were post annealed at 250°C about one hour. X-ray diffraction (XRD) was used to study of film’s crystalline structural. Their optical properties were measured by spectrophotometry in the spectra range of 400-850 nm, Kramers-Kronig method was used for the analysis of reflectivity curves of HgS films to obtain the optical constants of films in order to investigation of relation between deposition time and optical properties. According to X-ray diffraction details, all thin films showed crystalline phase with a preferential growth along the (220) planes. Optical results have been shown photolminisance property for HgS produced thin films. By increasing deposition time, the dielectric property, refractive index and band gap values are increased.


2019 ◽  
Vol 12 (25) ◽  
pp. 138-147
Author(s):  
Haidar Jwad Abdul-Ameer Al-Rehamey

Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the samples was determined from optical trasmittance spectra. It is observed that the direct band gap energy for as deposited and annealed films are (2.55, 2.45) eV, respectively. The effect of annealing at 250 oC for 1hr in air on optical and photoconductivity of films under various intensity of illuminations (43.81 and 115.12) mW/cm2 was studied. The dark and photocurrents of the annealed films were found to be greater than that of as deposited.


2015 ◽  
Vol 30 ◽  
pp. 86-95 ◽  
Author(s):  
Álvaro Bedoya-Calle ◽  
Manuel García-Méndez ◽  
Alejandro Torres-Castro ◽  
Sadasivan Shaji ◽  
Ubaldo Ortiz-Méndez

In2O3thin films with a top layer of SnO2were deposited onto glass substrates by DC reactive-magnetron sputtering. After deposition, In2O3/SnO2samples were annealed in vacuum at 400oC. Structural, optical, and chemical composition was investigated by X-ray diffraction, UV-Vis spectroscopy and XPS, respectively. X-ray data showed that films grow polycrystalline, where indium oxide crystallized in cubic as the main phase, with a preferential growth at the [0002] direction and lattice parameter of 10.11 Å. Signals of rhombohedral phase were also detected. XPS depth profiles show that tin coexists inSn2+andSn4+, while indium maintains the In2O3stoichiometry. Binding energy of Sn4+bound to oxygen was detected at 468 eV while In2+bound to oxygen at 444.7 eV. Nor tertiary compounds were detected at the In2O3/SnO2interface, neither In or Sn in metallic state.


2011 ◽  
Vol 306-307 ◽  
pp. 265-268
Author(s):  
Xue Yan Zhang ◽  
Xiao Yu Liu ◽  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
...  

Cadmium sulfide (CdS) thin films with (111) preferential orientation were grown on glass substrates at room temperature by radio frequency (R.F.) magnetron sputtering. The structural and optical properties of CdS films have been investigated by X-ray diffraction, Scanning Electron Microscope micrographs, PL spectra and transmittance spectra. The grain sizes have been evaluated. The transmission spectra of the obtained films reveal a relatively high transmission coefficient (80%) in the visible range. All these results show that the grain sizes increased while the optical band gap decreased with increasing the thickness of CdS films.


2021 ◽  
Author(s):  
M. MELOUKI ◽  
Y. LARBAH ◽  
A. DJELLOUL ◽  
M. ADNANE

Abstract The Cadmium sulfide (CdS) is the most advantageous material for the manufacture of the elaborate solar cells in thin layers, the study that we present, will relate to the elaborated and the characterization of CdS thin film deposited on glass substrates by chemical bath deposition (CBD) method. This study will help us to know if the annealing atmosphere nature affects the deposition of thin films of CdS. The X-ray diffraction (XRD) analysis reveals that the structures of pure thin films are Hexagonal and polycrystalline with preferential orientation (002). The scanning electron microscopy (SEM) measurements showed that the surface morphology homogeneous and uniform. The energy dispersive X-ray analysis (EDAX) studies confirmed that the films are nearly stoichiometric. The transmittance in the visible region (200-800 nm) is high of 60%, and band gap values oscillated between 2.36 and 2.47 eV for al thin films.


Sign in / Sign up

Export Citation Format

Share Document