Chemical Bath Deposition of CdS Thin Films: Growth and Structural Studies

1996 ◽  
Vol 426 ◽  
Author(s):  
Yuming Zhu ◽  
Dull Mao ◽  
D. L. Williamson ◽  
J. U. Trefny

AbstractChemical-bath-deposited CdS thin films from an ammonia-thiourea solution have been studied by x-ray diffraction, surface profilometry, ellipsometry, and other techniques. The compactness of the CdS films, structural properties of the films, and the growth mechanism have been investigated. For the deposition conditions used, we found that the film compactness reaches its maximum at a deposition time of 35 minutes. Films grown at longer deposition times are less compact, consistent with the CdS duplex layer structure proposed previously. This transition from compact layer growth to porous layer growth is important for depositing CdS films in solar cell applications. Based on x-ray diffraction (XRD) studies, we were able to determine the crystal phase, lattice constant, and other structural properties.

Author(s):  
Fatma Salamon

CdS thin films were prepared by chemical bath deposition technique (CBD) onto the glass substrates at different conditions of preparation. The obtained samples are studied by X-Ray diffraction (XRD). The XRD patterns of CdS samples revealed the formation with a hexagonal crystal structure P36mc, and the clear effect of the concentration of thiourea, cadmium sulfide, NaOH, time and temperature deposition, and annealing temperature, on the structure of the prepared thin films. through the study, we found that the samples have preferred orientation along [002], also the thickness of thin films decrease with deposition time after certain value, with the appearance of free cadmium. It has been found that the 200°C is the best temperature for annealing to improve the other structural and physical properties of films.


2011 ◽  
Vol 347-353 ◽  
pp. 3477-3480
Author(s):  
Liang Min Cai ◽  
Jian Huang ◽  
Jia Wei Jiang ◽  
Jun Le ◽  
Wei Min Shi ◽  
...  

CdS films were prepared by R.F. magnetron sputtering method. The effects of vapor CdCl2treatment on the properties of CdS films were studied. The vapor CdCl2thermal treatment at different temperature was employed in a CSS device, using CdCl2powder as evaporant. The structural and optical properties of CdS films were investigated by x-ray diffraction (XRD), PL spectra, and transmittance spectra, respectively. The results revealed that the CdS films had a structure of hexagonal wurtzite with a preferential orientation of the (002) plane. A better crystal quality and larger grain size, which are good for the solar cell application, were observed in the CdS samples annealed with CdCl2Subscript text.


2019 ◽  
Vol 12 (25) ◽  
pp. 138-147
Author(s):  
Haidar Jwad Abdul-Ameer Al-Rehamey

Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the samples was determined from optical trasmittance spectra. It is observed that the direct band gap energy for as deposited and annealed films are (2.55, 2.45) eV, respectively. The effect of annealing at 250 oC for 1hr in air on optical and photoconductivity of films under various intensity of illuminations (43.81 and 115.12) mW/cm2 was studied. The dark and photocurrents of the annealed films were found to be greater than that of as deposited.


2011 ◽  
Vol 306-307 ◽  
pp. 265-268
Author(s):  
Xue Yan Zhang ◽  
Xiao Yu Liu ◽  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
...  

Cadmium sulfide (CdS) thin films with (111) preferential orientation were grown on glass substrates at room temperature by radio frequency (R.F.) magnetron sputtering. The structural and optical properties of CdS films have been investigated by X-ray diffraction, Scanning Electron Microscope micrographs, PL spectra and transmittance spectra. The grain sizes have been evaluated. The transmission spectra of the obtained films reveal a relatively high transmission coefficient (80%) in the visible range. All these results show that the grain sizes increased while the optical band gap decreased with increasing the thickness of CdS films.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
H. B. Patil ◽  
S. V. Borse

Semiconducting thin films of ternary () have been deposited on glass substrate by the simple and economical chemical bath deposition method. We report the deposition and optimization of the solution growth parameters such as temperature, complexing agent, thiourea, and deposition time that maximizes the thickness of the deposited thin film. The X-ray diffraction deposited thin films having cubic structure. The thin films were uniform and adherent to substrate. The composition was found homogeneous and stoichiometric by EDAX analysis.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1454
Author(s):  
Gabriele Barrera ◽  
Federico Scaglione ◽  
Matteo Cialone ◽  
Federica Celegato ◽  
Marco Coïsson ◽  
...  

Bimetallic nanomaterials in the form of thin film constituted by magnetic and noble elements show promising properties in different application fields such as catalysts and magnetic driven applications. In order to tailor the chemical and physical properties of these alloys to meet the applications requirements, it is of great importance scientific interest to study the interplay between properties and morphology, surface properties, microstructure, spatial confinement and magnetic features. In this manuscript, FePd thin films are prepared by electrodeposition which is a versatile and widely used technique. Compositional, morphological, surface and magnetic properties are described as a function of deposition time (i.e., film thickness). Chemical etching in hydrochloric acid was used to enhance the surface roughness and help decoupling crystalline grains with direct consequences on to the magnetic properties. X-ray diffraction, SEM/AFM images, contact angle and magnetic measurements have been carried out with the aim of providing a comprehensive characterisation of the fundamental properties of these bimetallic thin films.


2012 ◽  
Vol 510-511 ◽  
pp. 156-162 ◽  
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

Polycrystalline thin films of Cadmium Sulfide (CdS) have been extensively studied for application as a window layer in CdTe/CdS and CIGS/CdS thin film solar cells. Higher efficiency of solar cells is possible by a better conductivity of a window layer, which can be achieved by doping these films with suitable elements. CdS thin films were deposited on properly cleaned glass substrate by thermal evaporation technique under vacuum2×10-5mbar. Films were structurally characterized by using X-ray diffraction. The X-ray diffraction spectra showed that the thin films were polycrystalline in nature. Aluminum was doped chemically in as deposited and annealed thin films by immersing films in AlNO33.9H2O solutions respectively. Comparison between the effects of different doping ratios on the structural and optical properties of the films was investigated. Higher doping ratios have improved the electrical properties by decreasing the resistivity of the films and slightly changed the bandgap energy Eg. The grain size, strain, and dislocation density were calculated for as-deposited and annealed films.


2011 ◽  
Vol 519 (13) ◽  
pp. 4366-4370 ◽  
Author(s):  
Chung-Jong Yu ◽  
Nark-Eon Sung ◽  
Han-Koo Lee ◽  
Hyun-Joon Shin ◽  
Young-Duck Yun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document