scholarly journals Study of Protein Targeting and Mislocalization in Rod Photoreceptors

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Asael Nunez ◽  
Shimpei Takita ◽  
Sanae Imanishi ◽  
Yoshikazu Imanishi

The photoreceptor outer segment (OS) is a highly specialized organelle for light absorption. Precise localization of OS resident proteins is important for photoreceptor function. Molecular mechanisms underlying OS targeting of proteins and their mislocalization, which frequently causes inherited retinal degeneration, have been intensely investigated. Rhodopsin, a major protein of the rod OS, is often mislocalized to the inner segment (IS) plasma membrane of rod photoreceptors in retinal degeneration patients. In the Xenopus laevis model of retinitis pigmentosa, we previously found that Na+/K+-ATPase (NKA), a major IS protein, was downregulated. The Imanishi lab recently created a novel retinitis pigmentosa mouse model carrying the Q344ter rhodopsin gene mutation, which causes rhodopsin mislocalization to the rod IS plasma membrane. In this summer program, we examined whether this mouse model also displays reduced NKA expression in the rod IS’s by immunohistochemistry at postnatal day 30. Although NKA was properly localized to the IS plasma membrane, expression of NKA was reduced in mutant photoreceptors compared to wildtype cells. In the rod OS, activation of rhodopsin eventually leads to the closure of the cyclic nucleotide gated (CNG) channel, which consists of a and b subunits. This channel localizes to the OS plasma membrane, and the N-terminal proline-rich region (R) of the b subunit (CNGb1) may be important for its interaction with peripherin (PRPH2), another OS resident protein. Currently, it is not well understood whether this interaction is necessary for the proper localization of CNGb1 to the OS plasma membrane. Using Xenopus as a model, we studied the role of the N-terminal proline-rich region in properly localizing CNGb1 to the OS plasma membrane by generating transgenic CNGb1(DR) tadpoles that expressed CNGb1(DR) in rods under the control of a rhodopsin promoter. We found that CNGb1(DR) properly localized to the OS plasma membrane. 

2017 ◽  
Vol 28 (5) ◽  
pp. 567-575 ◽  
Author(s):  
Rebecca Lu ◽  
David G. Drubin

During clathrin-mediated endocytosis (CME), endocytic-site maturation can be divided into two stages corresponding to the arrival of the early and late proteins at the plasma membrane. The early proteins are required to capture cargo and position the late machinery, which includes proteins involved in actin assembly and membrane scission. However, the mechanism by which early-arriving proteins select and stabilize endocytic sites is not known. Ede1, one of the earliest proteins recruited to endocytic sites, facilitates site initiation and stabilization. Deletion of EDE1 results in fewer CME initiations and defects in the timing of vesicle maturation. Here we made truncation mutants of Ede1 to better understand how different domains contribute to its recruitment to CME sites, site selection, and site maturation. We found that the minimal domains required for efficient Ede1 localization at CME sites are the third EH domain, the proline-rich region, and the coiled-coil region. We also found that many strains expressing ede1 truncations could support a normal rate of site initiation but still had defects in site-maturation timing, indicating separation of Ede1 functions. When expressed in yeast, human Eps15 localized to the plasma membrane, where it recruited late-phase CME proteins and supported productive endocytosis, identifying it as an Ede1 functional homologue.


2018 ◽  
Vol 32 (5) ◽  
pp. 2438-2451 ◽  
Author(s):  
Lorena Olivares‐Gonza´lez ◽  
Cristina Martínez‐Fernandez de la Ca´mara ◽  
David Herva´s ◽  
Jose´ Mar´a Milla´n ◽  
Regina Rodrigo

2018 ◽  
Vol 24 (5) ◽  
pp. 448-455 ◽  
Author(s):  
Ana B. Garcia-Delgado ◽  
Lourdes Valdés-Sánchez ◽  
Sofia M. Calado ◽  
Francisco J. Diaz-Corrales ◽  
Shom S. Bhattacharya

2020 ◽  
Author(s):  
Christina B. Bielmeier ◽  
Saskia Roth ◽  
Sabrina I. Schmitt ◽  
Stefaniya K. Boneva ◽  
Anja Schlecht ◽  
...  

Abstract BackgroundHereditary retinal degenerations like retinitis pigmentosa (RP) are amongst the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. Here, we in-depth characterized the transgenic VPP mouse model, a genetic model for autosomal dominant RP. MethodsWe examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescent staining and 3D reconstruction. ResultsOne month-old VPP mice showed a significantly higher number of apoptotic photoreceptor cells that resulted in a significantly thinner ONL in three months-old VPP mice, concomitant with an increase in reactivity of microglia and Müller cells. By RNASeq analysis we identified 9,256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, amongst others, dysregulation of TGF-β regulated extracellular matrix organization, factors of the (ocular) immune system/response and apoptosis. ConclusionThe predominant effect pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated and VEGF signaling that were significantly associated with the VPP transgene-induced photoreceptor degeneration. Thus, modulation of these processes might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2743-2743 ◽  
Author(s):  
Duygu Sari ◽  
Niko Tsopoulidis ◽  
John M. Asara ◽  
Nikolaos Patsoukis ◽  
Vassiliki A. Boussiotis

Abstract Adhesion of lymphocytes to antigen presenting cells (APCs) is a critical step linking innate and adaptive immunity. Lymphocyte-APC adhesion is accomplished through the principle adhesion molecule on the lymphocyte surface, the β2 integrin designated lymphocyte functional antigen 1 (LFA-1), which binds to intercellular adhesion molecule 1 (ICAM-1) on the surface of APCs. LFA-1 must be activated via a process referred to as inside-out signaling, which results in conformation changes leading to a high affinity state. Among the few signaling molecules implicated in inside-out signaling in hematopoietic cells are the small GTPase Rap1 and its downstream effector RIAM. RIAM is a multidomain protein that includes a talin binding region, two coiled-coiled regions, a small N-terminus proline-rich region, sequential Ras association (RA) and pleckstrin homology (PH) domains, and a large C-terminus proline-rich region, via which interacts with Ena/VASP family proteins and profilin. Through its C-terminus, RIAM constitutively interacts with PLC-γ1. The RA domain of RIAM has specificity for Rap1-GTP whereas the PH domain binds to the PLC-γ1 substrate PI(4,5)P2. The RA-PH domain region of RIAM functions as an integral unit and as a proximity detector, and both RA and PH are required for translocation of RIAM to the plasma membrane. Using primary human T lymphocytes and Jurkat T cells we determined previously that RIAM undergoes tyrosine phosphorylation by Src family kinases upon TCR stimulation. In the present study we sought to determine the role of tyrosine phosphorylation in RIAM function. To identify the precise region(s) of RIAM, which undergo phosphorylation by these kinases, we co-expressed individual truncation constructs of RIAM N-terminus, RA-PH or C-terminus regions along with the active or inactive form of Fyn or Lck in COS cells. Immunoprecipitations and immunoblot assays revealed that active Fyn and Lck mediated robust and selective tyrosine phosphorylation of the RA-PH structural unit of RIAM. Tandem mass spectrometry (LC-MS/MS) identified that tyrosine 340 (Y340) within the PH domain was the specific target. Because this tyrosine is localized within the RA-PH integral unit, we examined whether phosphorylation of Y340 in the PH domain might have an active role in the function of RIAM. Using site directed mutagenesis, we introduced a tyrosine-to-phenylalanine mutation (Y340F) rendering this residue resistant to phosphorylation, and FLAG-tagged RIAM-WT or FLAG-tagged RIAM-Y340F constructs were expressed in Jurkat T cells. Anti-FLAG immunoprecipitation followed by immunoblot showed that RIAM-WT and RIAM-Y340F displayed comparable interaction with PLC-γ1. However, phosphorylation of PLC-γ1 associated with RIAM-Y340F was impaired. Because Src family kinases and Itk, which are involved in PLC-γ1 phosphorylation and activation localize at the lipid rafts upon T cell stimulation, we examined whether RIAM-Y340F might display differential translocation to the plasma membrane thereby altering the ability of RIAM-associated PLC-γ1 to undergo activating phosphorylation. Isolation of membranous and cytosolic fractions by nitrogen cavitation revealed that in contrast to RIAM-WT, which rapidly translocated to the membrane fraction upon T cell stimulation, RIAM-Y340F remained exclusively in the cytosolic fraction. To investigate whether RIAM-Y340F displayed altered plasma membrane localization in vivo, we used mCherry-RIAM-WT or mCherry-RIAM-Y340F and live cell imaging. Although RIAM-WT readily translocated to the plasma membrane and colocalized with Rap1-GTP, RIAM-Y340F was unable to translocate to the plasma membrane and was detectable only in the cytoplasm. Because RIAM translocation to the plasma membrane and PLC-γ1 activation are required for inside-out activation of LFA-1, we examined the effects of RIAM-Y340F on LFA-1 activation. We determined that expression of RIAM Y340F abrogated LFA-1 activation and LFA-1-mediated adhesion in response to TCR/CD3 stimulation. Thus, TCR-mediated phosphorylation of Y340 in RIAM PH domain by Src family kinases is a mandatory requirement for activation of RIAM-associated PLC-γ1 and LFA-1 activation. Our results provide a mechanistic link between TCR-mediated signaling and inside-out activation of LFA-1, thereby initiating LFA-1: ICAM-1-mediated adhesion and cross-talk between T cells and APC. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 283 (2) ◽  
pp. F335-F343 ◽  
Author(s):  
J. Reinhardt ◽  
M. Kosch ◽  
M. Lerner ◽  
H. Bertram ◽  
D. Lemke ◽  
...  

The human nongastric H+-K+-ATPase, ATP1AL1, shown to reabsorb K+ in exchange for H+ or Na+, is localized in the luminal plasma membrane of renal epithelial cells. It is presumed that renal H+-K+-ATPases can be regulated by endocytosis. However, little is known about the molecular mechanisms that control plasma membrane expression of renal H+-K+-ATPases. In our study, activation of protein kinase C (PKC) using phorbol esters (phorbol 12-myristate 13-acetate) leads to clathrin-dependent internalization and intracellular accumulation of the ion pump in stably transfected Madin-Darby canine kidney cells. Functional inactivation of the H+-K+-ATPase by PKC activation is shown by intracellular pH measurements. Proton extrusion capacity of ATP1AL1-transfected cells is drastically reduced after phorbol 12-myristate 13-acetate incubation and can be prevented with the PKC blocker bisindolylmaleimide. Ion pump internalization and inactivation are specifically mediated by the PKC pathway, whereas activation of the protein kinase A pathway has no influence. Our results show that the nongastric H+-K+-ATPase is a specific target for the PKC pathway. Therefore, PKC-mediated phosphorylation is a potential regulatory mechanism for apical nongastric H+-K+-ATPase plasma membrane expression.


2021 ◽  
Vol 22 (12) ◽  
pp. 6307
Author(s):  
Christina B. Bielmeier ◽  
Saskia Roth ◽  
Sabrina I. Schmitt ◽  
Stefaniya K. Boneva ◽  
Anja Schlecht ◽  
...  

Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.


Sign in / Sign up

Export Citation Format

Share Document