Software Development for Setup Planning of Rotational Part

Author(s):  
Sumit Dwivedi ◽  
Shahnawaz Alam

An innovative approach was developed to solve the problem of setup planning, which is the most critical problem in process planning for discrete metal parts. Setup planning is the act of preparing detailed work instructions for setting up a part. The major objective of this research is to improve the performance of CAPP systems by developing a systematic approach to generate practical setup plans based on tolerance analysis. A comprehensive literature review on tolerance control in CAPP was conducted. It was found that tolerance chart analysis, a traditional tolerance control technique, is reactive in nature and can be greatly improved by solving the problem of setup planning. In order to develop a theoretically sound foundation for tolerance analysis-based setup planning, the problem of tolerance stack up in NC machining was analyzed in terms of manufacturing error analysis. Guidelines for setup planning were then developed based on the analysis. To systematically solve the setup planning problem, a graph theoretical setup planning algorithm for rotational parts was then developed for automated and integrated setup planning and fixture design. Its efficiency and effectiveness evaluated. The result is promising. The algorithms were then computerized. A setup planning program was developed under the Microsoft Windows environment using C.

Author(s):  
Satyandra K. Gupta ◽  
David Alan Bourne

Abstract Most process planning systems solve process planning problem for individual parts. Quite often, many different parts can be produced on shared setups. However, plans generated by current process planning systems fail to exploit this commonality between setups and try to generate optimal setups for individual parts. In this paper, we present an algorithm for multi-part setup planning. This algorithm takes a family of parts and tries to find a composite setup plan that can work for every part in the part family. Our setup planning algorithm employs a new two-step approach to handle multi-part setup planning problems. First, we identify the setup constraints imposed by various bending operations in the part family. These setup constraints describe spatial constraints on sizes and locations of various tooling stages in the setup. After identifying setup constraints, we try to generate setup plans that can satisfy all setup constraints. Any setup plan that satisfies all setup constraints is capable of accommodating every part in the part family. Setup changes constitute a major portion of the production time in batch production environments. We believe that multipart setup planning technique can be used to significantly cut down the total number of setups and increase the overall throughput.


Author(s):  
Hongying Shan ◽  
Chuang Wang ◽  
Cungang Zou ◽  
Mengyao Qin

This paper is a study of the dynamic path planning problem of the pull-type multiple Automated Guided Vehicle (multi-AGV) complex system. First, based on research status at home and abroad, the conflict types, common planning algorithms, and task scheduling methods of different AGV complex systems are compared and analyzed. After comparing the different algorithms, the Dijkstra algorithm was selected as the path planning algorithm. Secondly, a mathematical model is set up for the shortest path of the total driving path, and a general algorithm for multi-AGV collision-free path planning based on a time window is proposed. After a thorough study of the shortcomings of traditional single-car planning and conflict resolution algorithms, a time window improvement algorithm for the planning path and the solution of the path conflict covariance is established. Experiments on VC++ software showed that the improved algorithm reduces the time of path planning and improves the punctual delivery rate of tasks. Finally, the algorithm is applied to material distribution in the OSIS workshop of a C enterprise company. It can be determined that the method is feasible in the actual production and has a certain application value by the improvement of the data before and after the comparison.


Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Jing Huang ◽  
Changliu Liu

Abstract Trajectory planning is an essential module for autonomous driving. To deal with multi-vehicle interactions, existing methods follow the prediction-then-plan approaches which first predict the trajectories of others then plan the trajectory for the ego vehicle given the predictions. However, since the true trajectories of others may deviate from the predictions, frequent re-planning for the ego vehicle is needed, which may cause many issues such as instability or deadlock. These issues can be overcome if all vehicles can form a consensus by solving the same multi-vehicle trajectory planning problem. Then the major challenge is how to efficiently solve the multi-vehicle trajectory planning problem in real time under the curse of dimensionality. We introduce a novel planner for multi-vehicle trajectory planning based on the convex feasible set (CFS) algorithm. The planning problem is formulated as a non-convex optimization. A novel convexification method to obtain the maximal convex feasible set is proposed, which transforms the problem into a quadratic programming. Simulations in multiple typical on-road driving situations are conducted to demonstrate the effectiveness of the proposed planning algorithm in terms of completeness and optimality.


Author(s):  
Christine Largouët ◽  
Omar Krichen ◽  
Yulong Zhao

In this paper, the authors consider the planning problem for a system represented as a set of interacting agents evolving along time according to explicit timing constraints. Given a goal, the planning problem is to find the sequence of actions such that the system reaches the goal state in a limited time and in an optimal manner, assuming actions have a cost. In their approach, the planning problem is based on model-checking and controller synthesis techniques while the goal is defined using temporal logic. Each agent of the system is represented using the formalism of Priced Timed Game Automata (PTGA). PTGA is an extension of Timed Automata that allows the representation of cost on actions and the definition of uncontrollable actions. The authors define a planning algorithm that computes the best strategy to achieve a goal. To experiment their approach, they extend the classical Transport Domain with timing constraints, cost on actions and uncontrollable actions. The planning algorithm is finally presented on a marine ecosystem management problem.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984737 ◽  
Author(s):  
Kai Mi ◽  
Haojian Zhang ◽  
Jun Zheng ◽  
Jianhua Hu ◽  
Dengxiang Zhuang ◽  
...  

We consider a motion planning problem with task space constraints in a complex environment for redundant manipulators. For this problem, we propose a motion planning algorithm that combines kinematics control with rapidly exploring random sampling methods. Meanwhile, we introduce an optimization structure similar to dynamic programming into the algorithm. The proposed algorithm can generate an asymptotically optimized smooth path in joint space, which continuously satisfies task space constraints and avoids obstacles. We have confirmed that the proposed algorithm is probabilistically complete and asymptotically optimized. Finally, we conduct multiple experiments with path length and tracking error as optimization targets and the planning results reflect the optimization effect of the algorithm.


2013 ◽  
Vol 718-720 ◽  
pp. 1329-1334 ◽  
Author(s):  
Xue Qiang Gu ◽  
Yu Zhang ◽  
Shao Fei Chen ◽  
Jing Chen

The problem of planning flight trajectories is studied for multiple unmanned combat aerial vehicles (UCAVs) performing a cooperated air-to-ground target attack (CA/GTA) mission. Several constraints including individual and cooperative constraints are modeled, and an objective function is constructed. Then, the cooperative trajectory planning problem is formulated as a cooperative trajectory optimal control problem (CTP-OCP). Moreover, in order to handle the temporal constraints, a notion of the virtual time based strategy is introduced. Afterwards, a planning algorithm based on the differential flatness theory and B-spline curves is developed to solve the CTP-OCP. Finally, the proposed approach is demonstrated using a typical CA/GTA mission scenario, and the simulation results show that the proposed approach is feasible and effective.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983685 ◽  
Author(s):  
Jiangping Wang ◽  
Shirong Liu ◽  
Botao Zhang ◽  
Changbin Yu

This article proposes an efficient and probabilistic complete planning algorithm to address motion planning problem involving orientation constraints for decoupled dual-arm robots. The algorithm is to combine sampling-based planning method with analytical inverse kinematic calculation, which randomly samples constraint-satisfying configurations on the constraint manifold using the analytical inverse kinematic solver and incrementally connects them to the motion paths in joint space. As the analytical inverse kinematic solver is applied to calculate constraint-satisfying joint configurations, the proposed algorithm is characterized by its efficiency and accuracy. We have demonstrated the effectiveness of our approach on the Willow Garage’s PR2 simulation platform by generating trajectory across a wide range of orientation-constrained scenarios for dual-arm manipulation.


2020 ◽  
Vol 10 (9) ◽  
pp. 3180 ◽  
Author(s):  
Dongfang Dang ◽  
Feng Gao ◽  
Qiuxia Hu

Vehicles are highly coupled and multi-degree nonlinear systems. The establishment of an appropriate vehicle dynamical model is the basis of motion planning for autonomous vehicles. With the development of autonomous vehicles from L2 to L3 and beyond, the automatic driving system is required to make decisions and plans in a wide range of speeds and on bends with large curvature. In order to make precise and high-quality control maneuvers, it is important to account for the effects of dynamical coupling in these working conditions. In this paper, a new single-coupled dynamical model (SDM) is proposed to deal with the various dynamical coupling effects by identifying and simplifying the complicated one. An autonomous vehicle motion planning problem is then formulated using the nonlinear model predictive control theory (NMPC) with the SDM constraint (NMPC-SDM). We validated the NMPC-SDM with hardware-in-the-loop (HIL) experiments to evaluate improvements to control performance by comparing with the planners original design, using the kinematic and single-track models. The comparative results show the superiority of the proposed motion planning algorithm in improving the maneuverability and tracking performance.


Sign in / Sign up

Export Citation Format

Share Document